Application of S_TIDE in Exploration of Seasonal Variations of Internal Tidal Amplitudes in the Northern South China Sea

Bingtian Li aCollege of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao, China
bLaboratory of Marine Science and Numerical Modeling, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China

Search for other papers by Bingtian Li in
Current site
Google Scholar
PubMed
Close
,
Zexun Wei bLaboratory of Marine Science and Numerical Modeling, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
cLaboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China

Search for other papers by Zexun Wei in
Current site
Google Scholar
PubMed
Close
,
Yonggang Wang bLaboratory of Marine Science and Numerical Modeling, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
cLaboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China

Search for other papers by Yonggang Wang in
Current site
Google Scholar
PubMed
Close
,
Xinyu Guo dQingdao Campus of Naval Aviation University, Qingdao, China

Search for other papers by Xinyu Guo in
Current site
Google Scholar
PubMed
Close
,
Tengfei Xu bLaboratory of Marine Science and Numerical Modeling, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
cLaboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China

Search for other papers by Tengfei Xu in
Current site
Google Scholar
PubMed
Close
, and
Xianqing Lv eKey Laboratory of Physical Oceanography, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China
fQingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Xianqing Lv in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An enhanced harmonic analysis (S_TIDE) approach is adopted to examine the seasonal variations of internal tidal amplitudes in the northern South China Sea (SCS). Results of idealized experiments reveal that the seasonality can be captured by S_TIDE. By applying S_TIDE to mooring data, observed seasonality of internal tidal amplitudes in the northern SCS are explored. Not diurnal and semidiurnal internal tides (ITs), but overtides and long-period constituents of ITs exhibit clear seasonal cycles. However, differences between amplitudes of the eastward velocity and the northward counterpart are evident for K1, M2, and MK3, which may be caused by the intensification of background currents. Amplitudes of those ITs are stronger at intersection time between spring and summer in the eastward direction, but weaker in the northward direction. EOF analysis reveals that modes of diurnal ITs are higher than those of semidiurnal ITs, which induces relatively more complicated seasonal variations. In addition to intensification of background currents, influences of surface tides and stratification will also induce variations of internal tidal amplitudes, introducing tremendous difficulty in predicting variation trends of internal tidal amplitudes, which greatly reduces predictability of ITs.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zexun Wei, weizx@fio.org.cn; Xianqing Lv, xqinglv@ouc.edu.cn

Abstract

An enhanced harmonic analysis (S_TIDE) approach is adopted to examine the seasonal variations of internal tidal amplitudes in the northern South China Sea (SCS). Results of idealized experiments reveal that the seasonality can be captured by S_TIDE. By applying S_TIDE to mooring data, observed seasonality of internal tidal amplitudes in the northern SCS are explored. Not diurnal and semidiurnal internal tides (ITs), but overtides and long-period constituents of ITs exhibit clear seasonal cycles. However, differences between amplitudes of the eastward velocity and the northward counterpart are evident for K1, M2, and MK3, which may be caused by the intensification of background currents. Amplitudes of those ITs are stronger at intersection time between spring and summer in the eastward direction, but weaker in the northward direction. EOF analysis reveals that modes of diurnal ITs are higher than those of semidiurnal ITs, which induces relatively more complicated seasonal variations. In addition to intensification of background currents, influences of surface tides and stratification will also induce variations of internal tidal amplitudes, introducing tremendous difficulty in predicting variation trends of internal tidal amplitudes, which greatly reduces predictability of ITs.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zexun Wei, weizx@fio.org.cn; Xianqing Lv, xqinglv@ouc.edu.cn
Save
  • Alford, M. H., and Coauthors, 2011: Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 41, 22112222, https://doi.org/10.1175/JPO-D-11-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, S., and J. Xie, 2010: A propagation model for the internal solitary waves in the northern South China Sea. J. Geophys. Res., 115, C12074, https://doi.org/10.1029/2010JC006341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, A., Z. Guo, X. Lv, J. Song, and J. Zhang, 2017: Coherent and incoherent features, seasonal behaviors and spatial variations of internal tides in the northern South China Sea. J. Mar. Syst., 172, 7583, https://doi.org/10.1016/j.jmarsys.2017.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., H. Xue, D. Wang, and Q. Xie, 2013: Observed near-inertial kinetic energy in the northwestern South China Sea. J. Geophys. Res. Oceans, 118, 49654977, https://doi.org/10.1002/jgrc.20371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, T. F., and L. Rainville, 2008: Diurnal and semidiurnal internal tide energy flux at a continental slope in the South China Sea. J. Geophys. Res., 113, C03025, https://doi.org/10.1029/2007JC004418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Echeverri, P., and T. Peacock, 2010: Internal tide generation by arbitrary two-dimensional topography. J. Fluid Mech., 659, 247266, https://doi.org/10.1017/S0022112010002417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, https://doi.org/10.1038/35015531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787, https://doi.org/10.1146/annurev.fluid.39.050905.110227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gräwe, U., H. Burchard, M. Muller, and H. M. Schuttelaars, 2014: Seasonal variability in M2 and M4 tidal constituents and its implications for the coastal residual sediment transport. Geophys. Res. Lett., 41, 55635570, https://doi.org/10.1002/2014GL060517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, P., W. Fang, C. Liu, and F. Qiu, 2012: Seasonal characteristics of internal tides on the continental shelf in the northern South China Sea. J. Geophys. Res., 117, C04023, https://doi.org/10.1029/2011JC007215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., A. Cao, and X. Lv, 2018a: Seasonal variation and modal content of internal tides in the northern South China Sea. J. Oceanol. Limnol., 36, 651662, https://doi.org/10.1007/s00343-018-6352-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., H. Pan, A. Cao, and X. Lv, 2018b: A harmonic analysis method adapted to capturing slow variations of tidal amplitudes and phases. Cont. Shelf Res., 164, 3744, https://doi.org/10.1016/j.csr.2018.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hennon, T. D., M. H. Alford, and Z. Zhao, 2019: Global assessment of semidiurnal internal tide aliasing in Argo profiles. J. Phys. Oceanogr., 49, 25232533, https://doi.org/10.1175/JPO-D-19-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jan, S., C.-S. Chern, J. Wang, and S.-Y. Chao, 2007: Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea. J. Geophys. Res., 112, C06019, https://doi.org/10.1029/2006JC004003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jan, S., C.-S. Chern, J. Wang, and M.-D. Chiou, 2012: Generation and propagation of baroclinic tides modified by the Kuroshio in the Luzon Strait. J. Geophys. Res., 117, C02019, https://doi.org/10.1029/2011JC007229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, G., H. Pan, Q. Zhang, X. Lv, W. Zhao, and Y. Gao, 2018: Determination of harmonic parameters with temporal variations: An enhanced harmonic analysis algorithm and application to internal tidal currents in the South China Sea. J. Atmos. Oceanic Technol., 35, 13751398, https://doi.org/10.1175/JTECH-D-16-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. K., M. G. G. Foreman, H. J. Lie, J. H. Lee, J. Cherniawsky, and K.-D. Yum, 2002: Two-layer tidal modeling of the Yellow and East China Seas with application to seasonal variability of the M2 tide. J. Geophys. Res., 107, 3020, https://doi.org/10.1029/2001JC000838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., and J. D. Nash, 2010: Internal-tide generation and destruction by shoaling internal tides. Geophys. Res. Lett., 37, L23611, https://doi.org/10.1029/2010GL045598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lan, J., N. Zhang, and Y. Wang, 2013: On the dynamics of the South China Sea deep circulation. J. Geophys. Res. Oceans, 118, 12061210, https://doi.org/10.1002/jgrc.20104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matte, P., D. A. Jay, and E. D. Zaron, 2013: Adaptation of classical tidal harmonic analysis to nonstationary tides, with application to river tides. J. Atmos. Oceanic Technol., 30, 569589, https://doi.org/10.1175/JTECH-D-12-00016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matte, P., Y. Secretan, and J. Morin, 2014: Temporal and spatial variability of tidal-fluvial dynamics in the St. Lawrence fluvial estuary: An application of nonstationary tidal harmonic analysis. J. Geophys. Res. Oceans, 119, 57245744, https://doi.org/10.1002/2014JC009791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLandress, C., 2002: Interannual variations of the diurnal tide in the mesosphere induced by a zonal-mean wind oscillation in the tropics. Geophys. Res. Lett., 29, 1305, https://doi.org/10.1029/2001GL014551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., B. Zetler, and G. W. Groves, 1965: Tidal cusps. Geophys. J. Roy. Astron. Soc., 10, 211219, https://doi.org/10.1111/j.1365-246X.1965.tb03062.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. L. Shroyer, S. M. Kelly, M. E. Inall, T. F. Duda, M. D. Levine, N. L. Jones, and R. C. Musgrave, 2012: Are any coastal internal tides predictable? Oceanography, 25 (2), 8095, https://doi.org/10.5670/oceanog.2012.44.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2001: Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean. J. Geophys. Res., 106, 22 44122 449, https://doi.org/10.1029/2000JC000770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2004: Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J. Geophys. Res., 109, C04027, https://doi.org/10.1029/2003JC001923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, H., X. Lv, Y. Wang, P. Matte, H. Chen, and G. Jin, 2018: Exploration of tidal-fluvial interaction in the Columbia River estuary using S_TIDE. J. Geophys. Res. Oceans, 123, 65986619, https://doi.org/10.1029/2018JC014146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, H., Q. Zheng, and X. Lv, 2019: Temporal changes in the response of the nodal modulation of the M2 tide in the Gulf of Maine. Cont. Shelf Res., 186, 1320, https://doi.org/10.1016/j.csr.2019.07.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollmann, F., J. Nycander, C. Eden, and D. Olbers, 2019: Resolving the horizontal direction of internal tide generation. J. Fluid Mech., 864, 381407, https://doi.org/10.1017/jfm.2019.9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and E. D. Zaron, 2011: Non-stationary internal tides observed with satellite altimetry. Geophys. Res. Lett., 38, L17609, https://doi.org/10.1029/2011GL048617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shang, X., L. Qian, X. Xie, G. Chen, and R. Chen, 2015: Characteristics and seasonal variability of internal tides in the southern South China Sea. Deep-Sea Res. I, 98, 4352, https://doi.org/10.1016/j.dsr.2014.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, J., Q. Yang, and W. Zhao, 2009: Enhanced diapycnal mixing in the South China Sea. J. Phys. Oceanogr., 39, 31913203, https://doi.org/10.1175/2009JPO3899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., H. Pan, G. Jin, and X. Lv, 2020: Seasonal variation of the principal tidal constituents in the Bohai Sea. Ocean Sci., 16, 114, https://doi.org/10.5194/os-16-1-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., S. Peng, Z. Liu, R. Huang, Y.-K. Qian, and Y. Li, 2016: Tidal mixing in the South China Sea: An estimate based on the internal tide energetics. J. Phys. Oceanogr., 46, 107124, https://doi.org/10.1175/JPO-D-15-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., Z. Liu, and S. Peng, 2017: Impact of tidal mixing on water mass transformation and circulation in the South China Sea. J. Phys. Oceanogr., 47, 419432, https://doi.org/10.1175/JPO-D-16-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1975: Internal tides in the ocean. Rev. Geophys., 13, 167182, https://doi.org/10.1029/RG013i001p00167.

  • Xie, X., X. Shang, H. Van Haren, and G. Chen, 2013: Observations of enhanced nonlinear instability in the surface reflection of internal tides. Geophys. Res. Lett., 40, 15801586, https://doi.org/10.1002/grl.50322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Z., B. Yin, Y. Hou, and A. K. Liu, 2014: Seasonal variability and north–south asymmetry of internal tides in the deep basin west of the Luzon Strait. J. Mar. Syst., 134, 101112, https://doi.org/10.1016/j.jmarsys.2014.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, T., Qi, Y., Jing, Z., and Cai, S., 2020: Seasonal and spatial features of barotropic and baroclinic tides in the northwestern South China Sea. J. Geophys. Res. Oceans, 125, e2018JC014860, https://doi.org/10.1029/2018JC014860.

    • Search Google Scholar
    • Export Citation
  • Yang, Y.-J., T. Y. Tang, M. H. Chang, A. K. Liu, M.-K. Hsu, and S. R. Ramp, 2004: Solitons northeast of Tung-Sha Island during the ASIAEX pilot studies. IEEE J. Oceanic Eng., 29, 11821199, https://doi.org/10.1109/JOE.2004.841424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., J. Tian, B. Qiu, W. Zhao, P. Chang, D. Wu, and X. Wan, 2016: Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Sci. Rep., 6, 24349, https://doi.org/10.1038/srep24349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., B. Qiu, J. Tian, W. Zhao, and X. Huang, 2018: Latitude-dependent finescale turbulent shear generations in the Pacific tropical-extratropical upper ocean. Nat. Commun., 9, 4086, https://doi.org/10.1038/s41467-018-06260-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2014: Internal tide radiation from the Luzon Strait. J. Geophys. Res. Oceans, 119, 54345448, https://doi.org/10.1002/2014JC010014.

  • Zheng, Z., and X. Zhao, 1984: A study of long-period sea level changes in the China Sea areas. Mar. Geophys. Res., 7, 299306, https://doi.org/10.1007/BF00305429.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 202 0 0
Full Text Views 325 109 9
PDF Downloads 291 84 10