• Battaglia, A., E. Rustemeier, A. Tokay, U. Blahak, and C. Simmer, 2010: PARSIVEL snow observations: A critical assessment. J. Atmos. Oceanic Technol., 27, 333344, https://doi.org/10.1175/2009JTECHA1332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böhm, H., 1989: A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46, 24192427, https://doi.org/10.1175/1520-0469(1989)046<2419:AGEFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., K. Ikeda, G. Zhang, M. Schönhuber, and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650, https://doi.org/10.1175/JAM2489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovčić, P., A. Ryzhkov, D. Zrnić, and G. Zhang, 2018: Polarimetric radar relations for quantification of snow based on disdrometer data. J. Appl. Meteor. Climatol., 57, 103120, https://doi.org/10.1175/JAMC-D-17-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovčić, P., A. Ryzhkov, and D. Zrnić, 2020: Polarimetric relations for snow estimation—Radar verification. J. Appl. Meteor. Climatol., 59, 9911009, https://doi.org/10.1175/JAMC-D-19-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chase, R. J., S. W. Nesbitt, and G. M. McFarquhar, 2020: Evaluation of the microphysical assumptions within GPM-DPR using ground-based observations of rain and snow. Atmosphere, 11, 619, https://doi.org/10.3390/atmos11060619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., J. J. Gourley, Y. Hong, Q. Cao, N. Carr, P. E. Kirstetter, J. Zhang, and Z. Flamig, 2016: Using citizen science reports to evaluate estimates of surface precipitation type. Bull. Amer. Meteor. Soc., 97, 187193, https://doi.org/10.1175/BAMS-D-13-00247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falconi, M. T., A. von Lerber, D. Ori, F. S. Marzano, and D. Moisseev, 2018: Snowfall retrieval at X, Ka and W bands: Consistency of backscattering and microphysical properties using BAECC ground-based measurements. Atmos. Meas. Tech., 11, 30593079, https://doi.org/10.5194/amt-11-3059-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 13571371, https://doi.org/10.1175/JTECH1922.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., C. Fallgatter, K. Shkurko, and D. Howlett, 2012: Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall. Atmos. Meas. Tech., 5, 26252633, https://doi.org/10.5194/amt-5-2625-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., and J. S. Marshall, 1958: The distribution with size of aggregate snowflakes. J. Meteor., 15, 452461, https://doi.org/10.1175/1520-0469(1958)015<0452:TDWSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and C. D. Westbrook, 2010: Advancements in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci., 67, 24692482, https://doi.org/10.1175/2010JAS3379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G.-J., V. N. Bringi, R. Cifelli, D. Hudak, and W. A. Petersen, 2010: A methodology to derive radar reflectivity–liquid equivalent snow rate relations using C-band radar and a 2D video disdrometer. J. Atmos. Oceanic Technol., 27, 637651, https://doi.org/10.1175/2009JTECHA1284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G.-J., V. N. Bringi, D. Moisseev, W. A. Petersen, L. Bliven, and D. Hudak, 2015: Use of 2D-video disdrometer to derive mean density–size and Ze–SR relations: Four snow cases from the light precipitation validation experiment. Atmos. Res., 153, 3448, https://doi.org/10.1016/j.atmosres.2014.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V., and J. A. Curry, 2005: Fall velocities of hydrometeors in the atmosphere refinements to a continuous analytical power law. J. Atmos. Sci., 62, 43434357, https://doi.org/10.1175/JAS3622.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P. E., J. J. Gourley, Y. Hang, J. Zhang, S. Moazamigoodarzi, C. Langston, and A. Arthur, 2015: Probabilistic precipitation rate estimates with ground-based radar networks. Water Resour. Res., 51, 14221442, https://doi.org/10.1002/2014WR015672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kneifel, S., A. von Lerber, J. Tiira, D. Moisseev, P. Kollias, and J. Leinonen, 2015: Observed relations between snowfall microphysics and triple-frequency radar measurements. J. Geophys. Res. Atmos., 120, 60346055, https://doi.org/10.1002/2015JD023156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kochendorfer, J., and Coauthors, 2017: Analysis of single-Alter shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE. Hydrol. Earth Syst. Sci., 21, 35253542, https://doi.org/10.5194/hess-21-3525-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., and Coauthors, 2021: Snowfall in the northern Great Lakes: Lessons learned from a multi-sensor observatory. Bull. Amer. Meteor. Soc., 102, E1317E1339, https://doi.org/10.1175/BAMS-D-19-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M. Y., and Coauthors, 2000: A report of the field observations and early results of the South China Sea Monsoon Experiment (SCSMEX). Bull. Amer. Meteor. Soc., 81, 12611270, https://doi.org/10.1175/1520-0477(2000)081<1261:AROTFO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M., and V. Chandrasekar, 2019: Ground validation of surface snowfall algorithm in GPM Dual-Frequency Precipitation Radar. J. Atmos. Oceanic Technol., 36, 607619, https://doi.org/10.1175/JTECH-D-18-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., S. Kneifel, D. Moisseev, J. Tyynelä, S. Tanelli, and T. Nousiainen, 2012: Evidence of nonspherical behavior in millimeter-wavelength radar observations of snowfall. J. Geophys. Res., 117, D18205, https://doi.org/10.1029/2012JD017680.

    • Search Google Scholar
    • Export Citation
  • Li, H., D. Moisseev, and A. von Lerber, 2018: How does riming affect dual-polarization radar observations and snowflake shape? J. Geophys. Res. Atmos., 123, 60706081, https://doi.org/10.1029/2017JD028186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., J. Tiira, A. von Lerber, and D. Moisseev, 2020: Towards the connection between snow microphysics and melting layer: Insights from multifrequency and dual-polarization radar observations during BAECC. Atmos. Chem. Phys., 20, 95479562, https://doi.org/10.5194/acp-20-9547-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, A. Tokay, and L. F. Bliven, 2016: Retrieval of snow properties for Ku- and Ka-band dual-frequency radar. J. Appl. Meteor. Climatol., 55, 18451858, https://doi.org/10.1175/JAMC-D-15-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magono, C., and T. Nakamura, 1965: Aerodynamic studies of falling snowflakes. J. Meteor. Soc. Japan, 43, 139147, https://doi.org/10.2151/jmsj1965.43.3_139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2007: Modeling backscatter properties of snowfall at millimeter wavelengths. J. Atmos. Sci., 64, 17271736, https://doi.org/10.1175/JAS3904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and A. J. Heymsfield, 2005: Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62, 16371644, https://doi.org/10.1175/JAS3413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisseev, D., A. von Lerber, and J. Tiira, 2017: Quantifying the effect of riming on snowfall using ground-based observations. J. Geophys. Res. Atmos., 122, 40194037, https://doi.org/10.1002/2016JD026272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Instruments, 2004: IMAQ vision for LabVIEW user manual. National Instruments Doc., 141 pp., https://www.ni.com/pdf/manuals/371007a.pdf.

    • Search Google Scholar
    • Export Citation
  • Newman, A. J., P. A. Kucera, and L. F. Bliven, 2009: Presenting the Snowflake Video Imager (SVI). J. Atmos. Oceanic Technol., 26, 167179, https://doi.org/10.1175/2008JTECHA1148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pettersen, C., M. S. Kulie, L. F. Bliven, A. J. Merrelli, W. A. Petersen, T. J. Wagner, D. B. Wolff, and N. B. Wood, 2020a: A composite analysis of snowfall modes from four winter seasons in Marquette, Michigan. J. Appl. Meteor. Climatol., 59, 103124, https://doi.org/10.1175/JAMC-D-19-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pettersen, C., and Coauthors, 2020b: Introducing the Precipitation Imaging Package: Assessment of microphysical and bulk characteristics of snow. Atmosphere, 11, 785, https://doi.org/10.3390/atmos11080785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow? The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, https://doi.org/10.1175/BAMS-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2015: Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEX): For measurement’s sake, let it snow. Bull. Amer. Meteor. Soc., 96, 17191741, https://doi.org/10.1175/BAMS-D-13-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Souverijns, N., A. Gossart, S. Lhermitte, I. V. Gorodetskaya, S. Kneifel, M. Maahn, F. L. Bliven, and N. P. M. van Lipzig, 2017: Estimating radar reflectivity–snowfall rate relationships and their uncertainties over Antarctica by combining disdrometer and radar observations. Atmos. Res., 196, 211223, https://doi.org/10.1016/j.atmosres.2017.06.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., and I. Zawadzki, 2010: Snow studies. Part II: Average relationship between mass of snowflakes and their terminal fall velocity. J. Atmos. Sci., 67, 33193335, https://doi.org/10.1175/2010JAS3390.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiira, J., D. N. Moisseev, A. von Lerber, D. Ori, A. Tokay, L. F. Bliven, and W. Petersen, 2016: Ensemble mean density and its connection to other microphysical properties of falling snow as observed in southern Finland. Atmos. Meas. Tech., 9, 48254841, https://doi.org/10.5194/amt-9-4825-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., P. G. Bashor, E. Habib, and T. Kasparis, 2008: Raindrop size distribution measurements in tropical cyclones. Mon. Wea. Rev., 136, 16691685, https://doi.org/10.1175/2007MWR2122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., W. A. Petersen, P. Gatlin, and M. Wingo, 2013: Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Oceanic Technol., 30, 16721690, https://doi.org/10.1175/JTECH-D-12-00163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., D. B. Wolff, and W. A. Petersen, 2014: Evaluation of the new version of the laser-optical disdrometer, OTT PARSIVEL2. J. Atmos. Oceanic Technol., 31, 12761288, https://doi.org/10.1175/JTECH-D-13-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyynelä, J., and V. Chandrasekar, 2014: Characterizing falling snow using multifrequency dual-polarization measurements. J. Geophys. Res. Atmos., 119, 82688283, https://doi.org/10.1002/2013JD021369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyynelä, J., and A. von Lerber, 2019: Validation of microphysical snow models using in situ, multifrequency, and dual-polarization radar measurements in Finland. J. Geophys. Res. Atmos., 124, 13 27313 290, https://doi.org/10.1029/2019JD030721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Lerber, A., D. Moisseev, F. Bliven, W. Petersen, A.-M. Harri, and V. Chandrasekar, 2017: Microphysical properties of snow and their link to ZeS relations during BAECC 2014. J. Appl. Meteor. Climatol., 56, 15611582, https://doi.org/10.1175/JAMC-D-16-0379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Lerber, A., D. Moisseev, D. A. Marks, W. Petersen, A. M. Harri, and V. Chandrasekar, 2018: Validation of GMI snowfall observations by using a combination of weather radar and surface measurements. J. Appl. Meteor. Climatol., 57, 797820, https://doi.org/10.1175/JAMC-D-17-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N. B., T. S. L’Ecuyer, F. L. Bliven, and G. L. Stephens, 2013: Characterization of video disdrometer uncertainties and impacts on estimates of snowfall rate and radar reflectivity. Atmos. Meas. Tech., 6, 36353648, https://doi.org/10.5194/amt-6-3635-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N. B., T. S. L’Ecuyer, A. J. Heymsfield, G. L. Stephens, D. R. Hudak, and P. Rodriguez, 2014: Estimating snow microphysical properties using collocated multi-sensor observations. J. Geophys. Res. Atmos., 119, 89418961, https://doi.org/10.1002/2013JD021303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N. B., T. S. L’Ecuyer, A. J. Heymsfield, and G. L. Stephens, 2015: Microphysical constraints on millimeter-wavelength scattering properties of snow particles. J. Appl. Meteor. Climatol., 54, 909931, https://doi.org/10.1175/JAMC-D-14-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., 2014: Double fence intercomparison reference (DFIR) versus bush gauge for “true” snowfall measurement. J. Hydrol., 509, 94100, https://doi.org/10.1016/j.jhydrol.2013.08.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., D. E. Kingsmill, L. B. Nance, and M. Löffler-Mang, 2006: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteor. Climatol., 45, 14501464, https://doi.org/10.1175/JAM2406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 190 190 9
Full Text Views 67 63 5
PDF Downloads 75 70 6

Retrieval of Snow Water Equivalent by the Precipitation Imaging Package (PIP) in the Northern Great Lakes

View More View Less
  • 1 aJoint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland
  • | 2 bNASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 cFinnish Meteorological Institute, Helsinki, Finland
  • | 4 dSpace Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin
  • | 5 eNOAA/NESDIS/Center for Satellite Applications and Research, Madison, Wisconsin
  • | 6 fDepartment of Physics, University of Helsinki, Helsinki, Finland
  • | 7 gWallops Flight Facility, NASA Goddard Space Flight Center, Wallops Island, Virginia
Restricted access

Abstract

Performance of the Precipitation Imaging Package (PIP) for estimating the snow water equivalent (SWE) is evaluated through a comparative study with the collocated National Oceanic and Atmospheric Administration National Weather Service snow stake field measurements. The PIP together with a vertically pointing radar, a weighing bucket gauge, and a laser-optical disdrometer was deployed at the NWS Marquette, Michigan, office building for a long-term field study supported by the National Aeronautics and Space Administration’s Global Precipitation Measurement mission Ground Validation program. The site was also equipped with a weather station. During the 2017/18 winter, the PIP functioned nearly uninterrupted at frigid temperatures accumulating 2345.8 mm of geometric snow depth over a total of 499 h. This long record consists of 30 events, and the PIP-retrieved and snow stake field measured SWE differed less than 15% in every event. Two of the major events with the longest duration and the highest accumulation are examined in detail. The particle mass with a given diameter was much lower during a shallow, colder, uniform lake-effect event than in the deep, less cold, and variable synoptic event. This study demonstrated that the PIP is a robust instrument for operational use, and is reliable for deriving the bulk properties of falling snow.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ali Tokay, tokay@umbc.edu

Abstract

Performance of the Precipitation Imaging Package (PIP) for estimating the snow water equivalent (SWE) is evaluated through a comparative study with the collocated National Oceanic and Atmospheric Administration National Weather Service snow stake field measurements. The PIP together with a vertically pointing radar, a weighing bucket gauge, and a laser-optical disdrometer was deployed at the NWS Marquette, Michigan, office building for a long-term field study supported by the National Aeronautics and Space Administration’s Global Precipitation Measurement mission Ground Validation program. The site was also equipped with a weather station. During the 2017/18 winter, the PIP functioned nearly uninterrupted at frigid temperatures accumulating 2345.8 mm of geometric snow depth over a total of 499 h. This long record consists of 30 events, and the PIP-retrieved and snow stake field measured SWE differed less than 15% in every event. Two of the major events with the longest duration and the highest accumulation are examined in detail. The particle mass with a given diameter was much lower during a shallow, colder, uniform lake-effect event than in the deep, less cold, and variable synoptic event. This study demonstrated that the PIP is a robust instrument for operational use, and is reliable for deriving the bulk properties of falling snow.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ali Tokay, tokay@umbc.edu
Save