• Albo, D., S. Ellis, M. Dixon, A. Weekley, M. Politovich, G. Cunning, and J. C. Hubbert, 2010: Icing hazard level detection: Final report. NCAR Research Applications Laboratory Rep., 59 pp.

  • Andrić, J., M. R. Kumjian, D. S. Zrnić, J. M. Straka, and V. M. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, https://doi.org/10.1175/JAMC-D-12-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bader, M. J., S. A. Clough, and G. P. Cox, 1987: Aircraft and dual polarization radar observations of hydrometeors in light stratiform precipitation. Quart. J. Roy. Meteor. Soc., 113, 491515, https://doi.org/10.1002/qj.4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, M. P., and J. Hallet, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, https://doi.org/10.1175/2009JAS2883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and A. Rodi, 1989: Laboratory and wind tunnel evaluations of the Rosemount icing detector. J. Atmos. Oceanic Technol., 6, 971979, https://doi.org/10.1175/1520-0426(1989)006<0971:LAWTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernstein, B. C., F. McDonough, M. K. Politovich, B. G. Brown, T. P. Ratvasky, D. R. Miller, C. A. Wolff, and G. Cunning, 2005: Current icing potential: Algorithm description and comparison with aircraft observations. J. Appl. Meteor., 44, 969986, https://doi.org/10.1175/JAM2246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boodoo, S., D. Hudak, N. Donaldson, and M. Leduc, 2010: Application of dual-polarization radar melting-layer detection algorithm. J. Appl. Meteor. Climatol., 49, 17791793, https://doi.org/10.1175/2010JAMC2421.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and Coauthors, 2001: The MAP special observing period. Bull. Amer. Meteor. Soc., 82, 433462, https://doi.org/10.1175/1520-0477(2001)082<0433:TMSOP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brahimi, M., P. Tran, D. Chocron, F. Tezok, and I. Paraschivoiu, 1997: Effect of supercooled large droplets on ice accretion characteristics. 35th Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA, 97-0306, https://doi.org/10.2514/6.1997-306.

    • Crossref
    • Export Citation
  • Brandes, E. A., and K. Ikeda, 2004: Freezing-level estimation with polarimetric radar. J. Appl. Meteor., 43, 15411553, https://doi.org/10.1175/JAM2155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Brunkow, D., V. N. Bringi, P. Kennedy, S. Rutledge, V. Chandrasekar, E. Mueller, and R. Bowie, 2000: A description of the CSU–CHILL National Radar Facility. J. Atmos. Oceanic Technol., 17, 15961608, https://doi.org/10.1175/1520-0426(2000)017<1596:ADOTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cober, S., and G. Isaac, 2012: Characterization of aircraft icing environments with supercooled large drops for application to commercial aircraft certification. J. Appl. Meteor. Climatol., 51, 265284, https://doi.org/10.1175/JAMC-D-11-022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Elmore, K. L., 2011: The NSSL hydrometeor classification algorithm in winter surface precipitation: Evaluation and future development. Wea. Forecasting, 26, 756765, https://doi.org/10.1175/WAF-D-10-05011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., and W. Szyrmer, 1999: Modeling of the melting layer. Part II: Electromagnetic. J. Atmos. Sci., 56, 35933600, https://doi.org/10.1175/1520-0469(1999)056<3593:MOTMLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, P. H. Kaye, E. Hirst, and R. Greenaway, 2004: Simultaneous radar and aircraft observations of mixed-phase cloud at the 100-m-scale. Quart. J. Roy. Meteor. Soc., 130, 18771904, https://doi.org/10.1256/qj.03.102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, J., and A. Majewski, 2017: UW King Air hydrometeor size spectra data, version 1.0. UCAR/NCAR Earth Observing Laboratory, accessed 22 December 2017, https://doi.org/10.5065/D6GT5KxK.

    • Crossref
    • Export Citation
  • Giangrande, S. E., J. M. Krause, and A. V. Ryzhkov, 2008: Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteor. Climatol., 47, 13541364, https://doi.org/10.1175/2007JAMC1634.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, S. R., and R. E. Stewart, 2007: Observations of ice pellets during a winter storm. Atmos. Res., 85, 6476, https://doi.org/10.1016/j.atmosres.2006.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, S. R., R. E. Stewart, and W. Henson, 2009: On the variation of ice pellet characteristics. J. Geophys. Res., 114, D09207, https://doi.org/10.1029/2008JD011260.

    • Crossref
    • Export Citation
  • Grazioli, J., D. Tuia, and A. Berne, 2015: Hydrometeor classification from polarimetric radar measurements: A clustering approach. Atmos. Meas. Tech., 8, 149170, https://doi.org/10.5194/amt-8-149-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., P. R. Field, A. J. Illingworth, R. J. Cotton, and T. W. Choularton, 2002: Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar. Quart. J. Roy. Meteor. Soc., 128, 451476, https://doi.org/10.1256/003590002321042054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., M. Dixon, S. M. Ellis, and G. Meymaris, 2009a: Weather radar ground clutter. Part I: Identification, modeling, and simulation. J. Atmos. Oceanic Technol., 26, 11651180, https://doi.org/10.1175/2009JTECHA1159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., M. Dixon, and S. M. Ellis, 2009b: Weather radar ground clutter. Part II: Real-time identification and filtering. J. Atmos. Oceanic Technol., 26, 11811197, https://doi.org/10.1175/2009JTECHA1160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., S. Ellis, M. Dixon, and G. Meymaris, 2010a: Modeling, error analysis, and evaluation of dual-polarization variables obtained from simultaneous horizontal and vertical polarization transmit radar. Part I: Modeling and antenna errors. J. Atmos. Oceanic Technol., 27, 15831598, https://doi.org/10.1175/2010JTECHA1336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., S. Ellis, M. Dixon, and G. Meymaris, 2010b: Modeling, error analysis, and evaluation of dual-polarization variables obtained from simultaneous horizontal and vertical polarization transmit radar. Part II: Experimental data. J. Atmos. Oceanic Technol., 27, 15991607, https://doi.org/10.1175/2010JTECHA1337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikeda, K., E. A. Brandes, and R. M. Rasmussen, 2005: Polarimetric radar observation of multiple freezing levels. J. Atmos. Sci., 62, 36243636, https://doi.org/10.1175/JAS3556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikeda, K., R. Rasmussen, E. Brandes, and F. McDonough, 2009: Freezing drizzle detection with WSR-88D radars. J. Appl. Meteor. Climatol., 48, 4160, https://doi.org/10.1175/2008JAMC1939.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junyent, F., V. Chandrasekar, V. N. Bringi, S. A. Rutledge, P. C. Kennedy, D. Brunkow, J. George, and R. Bowie, 2015: Transformation of the CSU–CHILL radar facility to a dual-frequency, dual-polarization Doppler system. Bull. Amer. Meteor. Soc., 96, 975996, https://doi.org/10.1175/BAMS-D-13-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeler, R. J., J. Lutz, and J. Vivekanandan, 2000: S-Pol: NCAR’s polarimetric Doppler research radar. IEEE 2000 Int. Geoscience and Remote Sensing Symp., Honolulu, HI, IEEE, 1570–1573, https://doi.org/10.1109/IGARSS.2000.857275.

    • Crossref
    • Export Citation
  • Kennedy, P. C., and S. A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, https://doi.org/10.1175/2010JAMC2558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and G. Isaac, 2003: Phase transformation of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 1938, https://doi.org/10.1256/qj.01.203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and I. Heckman, 2019: Improved analysis of images of spherical droplets in 2D particle probes for characterization of supercooled sprays. 12th Int. Conf. on Icing of Aircraft, Engines, and Structures, Minneapolis, MN, SAE International.

  • Korolev, A., J. W. Strapp, G. A. Isaac, and A. N. Nevzorov, 1998: The Nevzorov airborne hot-wire LWC–TWC probe: Principle of operation and performance characteristics. J. Atmos. Oceanic Technol., 15, 14951510, https://doi.org/10.1175/1520-0426(1998)015<1495:TNAHWL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, H. D. Reeves, and T. J. Schuur, 2013: A dual-polarization radar signature of hydrometeor refreezing in winter storms. J. Appl. Meteor. Climatol., 52, 25492566, https://doi.org/10.1175/JAMC-D-12-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., K. L. Elmore, and M. B. Richman, 2010: Reaching scientific consensus through a competition. Bull. Amer. Meteor. Soc., 91, 14231427, https://doi.org/10.1175/2010BAMS2870.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsberg, B., J. Steuernagle, K. Roy, D. Wright, and K. Hummel, 2008: Aircraft icing safety advisor. AOPA Air Safety Foundation Doc. SA11-04/08, 16 pp., https://www.aopa.org/-/media/Files/AOPA/Home/Pilot-Resources/ASI/Safety-Advisors/sa11.pdf.

  • Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. Baker, Q. Mo, and H. Jonsson, 2006: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, https://doi.org/10.1175/JTECH1927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140164, https://doi.org/10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, https://doi.org/10.1175/2008WAF2222205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., S. Goeke, R. M. Rauber, and L. DiGirolamo, 2010: Discrimination of mixed-versus ice-phase clouds using dual-polarization radar with application to detection of aircraft icing regions. J. Appl. Meteor. Climatol., 49, 920936, https://doi.org/10.1175/2009JAMC2267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radhakrishna, B., F. Fabry, and A. Kilambi, 2019: Fuzzy logic algorithms to identify birds, precipitation, and ground clutter in S-band radar data using polarimetric and nonpolarimetric variables. J. Atmos. Oceanic Technol., 36, 24012414, https://doi.org/10.1175/JTECH-D-19-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raga, G. B., R. E. Stewart, and N. R. Donaldson, 1991: Microphysical characteristics through the melting region of a midlatitude winter storm. J. Atmos. Sci., 48, 843855, https://doi.org/10.1175/1520-0469(1991)048<0843:MCTTMR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinking, R. F., 1975: Formation of graupel. J. Appl. Meteor., 14, 745754, https://doi.org/10.1175/1520-0450(1975)014<0745:FOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2007: The impact of beam broadening on the quality of radar polarimetric data. J. Atmos. Oceanic Technol., 24, 729744, https://doi.org/10.1175/JTECH2003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 1998: Discrimination between rain and snow with a polarimetric radar. J. Appl. Meteor., 37, 12281240, https://doi.org/10.1175/1520-0450(1998)037<1228:DBRASW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, V. M. Melnikov, and T. J. Schuur, 2005a: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22, 11381155, https://doi.org/10.1175/JTECH1772.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005b: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, https://doi.org/10.1175/BAMS-86-6-809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., P. Zhang, H. Reeves, M. Kumjian, T. Tschallener, S. Trömel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, https://doi.org/10.1175/JTECH-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., H. Park, A. V. Ryzhkov, and H. D. Reeves, 2012: Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals. J. Appl. Meteor. Climatol., 51, 763779, https://doi.org/10.1175/JAMC-D-11-091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serke, D. J., J. Hubbert, S. Ellis, A. Reehorst, P. Kennedy, D. Albo, A. Weekley, and M. Politovich, 2011: The Winter 2010 FRONT/NIRSS in-flight icing detection field campaign. 35th Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor. Soc., 16A.6, https://ams.confex.com/ams/35Radar/webprogram/Paper192007.html.

  • Serke, D. J., D. Adriaansen, S. Tessendorf, J. Haggerty, D. Albo, and G. Cunning, 2017: Supercooled large drop detection with precipitation radars for the enhancement of operational icing products. 38th Conf. on Radar Meteorology, Chicago, IL, Amer. Meteor. Soc., 20, https://ams.confex.com/ams/38RADAR/webprogram/Paper320378.html.

  • Siggia, A., and J. R. Passarelli, 2004: Gaussian model adaptive processing (GMAP) for improved ground clutter cancellation and moment calculation. Proc. Third European Conf. on Radar in Meteorology and Hydrology, Visby, Gotland, Sweden, ERAD, 67–73, https://docplayer.net/30201737-Erad-gaussian-model-adaptive-processing-gmap-for-improved-ground-clutter-cancellation-and-moment-calculation.html.

  • Stewart, R. E., 1992: Precipitation types in the transition region of winter storms. Bull. Amer. Meteor. Soc., 73, 287296, https://doi.org/10.1175/1520-0477(1992)073<0287:PTITTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., J. D. Marwitz, J. C. Pace, and R. E. Carbone, 1984: Characteristics through the melting layer of stratiform clouds. J. Atmos. Sci., 41, 32273237, https://doi.org/10.1175/1520-0469(1984)041<3227:CTTMLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., C. A. Lin, and S. R. Macpherson, 1990: The structure of a winter storm producing heavy precipitation over Nova Scotia. Mon. Wea. Rev., 118, 411426, https://doi.org/10.1175/1520-0493(1990)118<0411:TSOAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, https://doi.org/10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and N. Fukuta, 1988: Observations of the embryos of graupel. J. Atmos. Sci., 45, 32883297, https://doi.org/10.1175/1520-0469(1988)045<3288:OOTEOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tessendorf, S., and Coauthors, 2019: A transformational approach to winter orographic weather modification research: The SNOWIE project. Bull. Amer. Meteor., 100, 7192, https://doi.org/10.1175/BAMS-D-17-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. M. Schultz, A. V. Ryzhkov, and R. L. Holle, 2001: Multiscale structure and evolution of an Oklahoma winter precipitation event. Mon. Wea. Rev., 129, 486501, https://doi.org/10.1175/1520-0493(2001)129<0486:MSAEOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., D. M. Tobin, and M. R. Kumjian, 2016: Polarimetric radar observations of precipitation type and rate from the 2–3 March 2014 winter storm in Oklahoma and Arkansas. Wea. Forecasting, 31, 11791196, https://doi.org/10.1175/WAF-D-16-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., S. M. Ellis, R. Oye, D. S. Zrnić, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, https://doi.org/10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and V. Chandrasekar, 2006: Polarization isolation requirements for linear dual-polarization weather radar in simultaneous transmission mode of operation. IEEE Trans. Geosci. Remote Sens., 44, 20192028, https://doi.org/10.1109/TGRS.2006.872138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E., and Coauthors, 2015: Measurements of differential reflectivity in snowstorms and warm season stratiform systems. J. Appl. Meteor. Climatol., 54, 573595, https://doi.org/10.1175/JAMC-D-14-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolde, M., and G. Vali, 2001: Polarimetric signatures from ice crystals observed at 95 GHz in winter clouds. Part I: Dependence of crystal form. J. Atmos. Sci., 58, 828841, https://doi.org/10.1175/1520-0469(2001)058<0828:PSFICO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zerr, R., 1997: Freezing rain, an observational and theoretical study. J. Appl. Meteor., 36, 16471661, https://doi.org/10.1175/1520-0450(1997)036<1647:FRAOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406, https://doi.org/10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 385 244 0
Full Text Views 190 153 27
PDF Downloads 184 141 28

Radar Icing Algorithm: Algorithm Description and Comparison with Aircraft Observations

David J. SerkeaResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by David J. Serke in
Current site
Google Scholar
PubMed
Close
,
Scott M. EllisaResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Scott M. Ellis in
Current site
Google Scholar
PubMed
Close
,
Sarah A. TessendorfaResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Sarah A. Tessendorf in
Current site
Google Scholar
PubMed
Close
,
David E. AlboaResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by David E. Albo in
Current site
Google Scholar
PubMed
Close
,
John C. HubbertbEarth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by John C. Hubbert in
Current site
Google Scholar
PubMed
Close
, and
Julie A. HaggertyaResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado
bEarth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Julie A. Haggerty in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Detection of in-flight icing hazard is a priority of the aviation safety community. The “Radar Icing Algorithm” (RadIA) has been developed to indicate the presence, phase, and relative size of supercooled drops. This paper provides an evaluation of RadIA via comparison to in situ microphysical measurements collected with a research aircraft during the 2017 “Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment” (SNOWIE) field campaign. RadIA uses level-2 dual-polarization radar moments from operational National Weather Service WSR-88D and a numerical weather prediction model temperature profile as inputs. Moment membership functions are defined based on the results of previous studies, and fuzzy logic is used to combine the output of these functions to create a 0 to 1 interest for detecting small-drop, large-drop, and mixed-phase icing. Data from the two-dimensional stereo (2D-S) particle probe on board the University of Wyoming King Air aircraft were categorized as either liquid or solid phase water with a shape classification algorithm and binned by size. RadIA interest values from 17 cases were matched to statistical measures of the solid/liquid particle size distributions (such as maximum particle diameter) and values of LWC from research aircraft flights. Receiver operating characteristic area under the curve (AUC) values for RadIA algorithms were 0.75 for large-drop, 0.73 for small-drop, and 0.83 for mixed-phase cases. RadIA is proven to be a valuable new capability for detecting the presence of in-flight icing hazards from ground-based precipitation radar.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David Serke, serke@ucar.edu

Abstract

Detection of in-flight icing hazard is a priority of the aviation safety community. The “Radar Icing Algorithm” (RadIA) has been developed to indicate the presence, phase, and relative size of supercooled drops. This paper provides an evaluation of RadIA via comparison to in situ microphysical measurements collected with a research aircraft during the 2017 “Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment” (SNOWIE) field campaign. RadIA uses level-2 dual-polarization radar moments from operational National Weather Service WSR-88D and a numerical weather prediction model temperature profile as inputs. Moment membership functions are defined based on the results of previous studies, and fuzzy logic is used to combine the output of these functions to create a 0 to 1 interest for detecting small-drop, large-drop, and mixed-phase icing. Data from the two-dimensional stereo (2D-S) particle probe on board the University of Wyoming King Air aircraft were categorized as either liquid or solid phase water with a shape classification algorithm and binned by size. RadIA interest values from 17 cases were matched to statistical measures of the solid/liquid particle size distributions (such as maximum particle diameter) and values of LWC from research aircraft flights. Receiver operating characteristic area under the curve (AUC) values for RadIA algorithms were 0.75 for large-drop, 0.73 for small-drop, and 0.83 for mixed-phase cases. RadIA is proven to be a valuable new capability for detecting the presence of in-flight icing hazards from ground-based precipitation radar.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David Serke, serke@ucar.edu
Save