• Barnes, H. C., J. P. Zagrodnik, L. A. McMurdie, A. K. Rowe, and R. A. Houze Jr., 2018: Kelvin–Helmholtz waves in precipitating midlatitude cyclones. J. Atmos. Sci., 75, 27632785, https://doi.org/10.1175/JAS-D-17-0365.1.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. John Wiley and Sons, 530 pp.

  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414, https://doi.org/10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chase, R. J., and Coauthors, 2018: Evaluation of triple-frequency radar retrieval of snowfall properties using coincident airborne in situ observations during OLYMPEX. Geophys. Res. Lett., 45, 57525760, https://doi.org/10.1029/2018GL077997.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., A. Protat, J. Testud, D. Bouniol, A. J. Heymsfield, A. Bansemer, P. R. A. Brown, and R. M. Forbes, 2005: Statistical properties of the normalized ice particle size distribution. J. Geophys. Res., 110, D10201, https://doi.org/10.1029/2004JD005405.

    • Search Google Scholar
    • Export Citation
  • Duffy, G., G. McFarquhar, S. W. Nesbitt, and R. Bennartz, 2021: Demonstration of a consistent relationship between dual-frequency reflectivity and the mass-weighted mean diameter in measurements of frozen precipitation from GCPEX, OLYMPEX, and MC3E. J. Atmos. Sci., 78, 25332547, https://doi.org/10.1175/JAS-D-20-0174.1.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., 1999: Aircraft observations of ice crystal evolution in an altostratus cloud. J. Atmos. Sci., 56, 19251941, https://doi.org/10.1175/1520-0469(1999)056<1925:AOOICE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Coauthors, 2017: Secondary ice production: Current state of the science and recommendations for the future. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0014.1.

  • Finlon, J. A., G. M. McFarquhar, R. M. Rauber, D. M. Plummer, B. F. Jewett, D. Leon, and K. R. Knupp, 2016: A comparison of X-band polarization parameters with in situ microphysical measurements in the comma head of two winter cyclones. J. Appl. Meteor. Climatol., 55, 25492574, https://doi.org/10.1175/JAMC-D-16-0059.1.

    • Search Google Scholar
    • Export Citation
  • Finlon, J. A., G. M. McFarquhar, S. W. Nesbitt, R. M. Rauber, H. Morrison, W. Wu, and P. Zhang, 2019: A novel approach for characterizing the variability in mass–dimension relationships: Results from MC3E. Atmos. Chem. Phys., 19, 36213643, https://doi.org/10.5194/acp-19-3621-2019.

    • Search Google Scholar
    • Export Citation
  • French, J. R., and A. Majewksi, 2017: UW King Air hydrometeor size spectra data, version 1.0. UCAR/NCAR Earth Observing Laboratory, accessed 22 December 2017, https://doi.org/10.5065/D6GT5KXK.

  • French, J. R., and D. Behringer, 2021: UW King Air manually corrected Nevzorov liquid/total/ice water content, version 1.0. UCAR/NCAR Earth Observing Laboratory, accessed 10 June 2021, https://doi.org/10.26023/2QRK-XSBA-RS0P.

  • Grasmick, C., and B. Geerts, 2020: Detailed dual-Doppler structure of Kelvin–Helmholtz waves from an airborne profiling radar over complex terrain. Part I: Dynamic structure. J. Atmos. Sci., 77, 17611782, https://doi.org/10.1175/JAS-D-19-0108.1.

    • Search Google Scholar
    • Export Citation
  • Grasmick, C., B. Geerts, X. Chu, J. R. French, and R. M. Rauber, 2021: Detailed dual-Doppler structure of Kelvin–Helmholtz waves from an airborne profiling radar over complex terrain. Part II: Evidence for precipitation enhancement from observations and modeling. J. Amos. Sci., 78, 34553472, https://doi.org/10.1175/JAS-D-20-0392.1.

  • Grecu, M., L. Tian, G. M. Heymsfield, A. Tokay, W. S. Olson, A. J. Heymsfield, and A. Bansemer, 2018: Nonparametric methodology to estimate precipitating ice from multiple-frequency radar reflectivity observations. J. Appl. Meteor. Climatol., 57, 26052622, https://doi.org/10.1175/JAMC-D-18-0036.1.

    • Search Google Scholar
    • Export Citation
  • Haimov, S., J. R. French, B. Geerts, Z. Wang, A. Rodi, and A. Pazmany, 2018: Compact airborne Ka-band radar: A new addition to the University of Wyoming Aircraft for atmospheric research. 2018 IEEE Int. Geoscience and Remote Sensing Symp., Valencia, Spain, IEEE, 897900, https://doi.org/10.1109/IGARSS.2018.8519605.

  • Heymsfield, A. J., A. Bansemer, C. Schmitt, C. Twohy, and M. R. Poellot, 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61, 9821003, https://doi.org/10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., A. J. Illingworth, and H. Sauvageot, 2000: Measuring crystal size in cirrus using 35- and 94-GHz radars. J. Atmos. Oceanic Technol., 17, 2737, https://doi.org/10.1175/1520-0426(2000)017<0027:MCSICU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., N. Gaussiat, and A. J. Illingworth, 2005: Stratocumulus liquid water content from dual-wavelength radar. J. Atmos. Oceanic Technol., 22, 12071218, https://doi.org/10.1175/JTECH1768.1.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., L. Tian, P. R. A. Brown, C. D. Westbrook, A. J. Heymsfield, and J. D. Eastment, 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteor. Climatol., 51, 655671, https://doi.org/10.1175/JAMC-D-11-074.1.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Hufford, G., 1991: A model for the complex permittivity of ice at frequencies below 1 THz. Int. J. Infrared Millimeter Waves, 12, 677682, https://doi.org/10.1007/BF01008898.

    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., and G. M. McFarquhar, 2014: An assessment of the impact of antishattering tips and artifact removal techniques on bulk cloud ice microphysical and optical properties measured by the 2D cloud probe. J. Atmos. Oceanic Technol., 31, 21312144, https://doi.org/10.1175/JTECH-D-14-00018.1.

    • Search Google Scholar
    • Export Citation
  • Kneifel, S., M. S. Kulie, and R. Bennartz, 2011: A triple‐frequency approach to retrieve microphysical snowfall parameters. J. Geophys. Res., 116, D11203, https://doi.org/10.1029/2010JD015430.

    • Search Google Scholar
    • Export Citation
  • Kneifel, S., A. von Lerber, J. Tiira, D. Moisseev, P. Kollias, and J. Leinonen, 2015: Observed relations between snowfall microphysics and triple-frequency radar measurements. J. Geophys. Res. Atmos., 120, 60346055, https://doi.org/10.1002/2015JD023156.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., J. W. Strapp, G. A. Isaac, and A. N. Nevzorov, 1998: The Nevzorov airborne hot-wire LWC–TWC probe: Principle of operation and performance characteristics. J. Atmos. Oceanic Technol., 15, 14951510, https://doi.org/10.1175/1520-0426(1998)015<1495:TNAHWL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., J. W. Strapp, G. A. Isaac, and E. Emery, 2013: Improved airborne hot-wire measurements of ice water content in clouds. J. Atmos. Oceanic Technol., 30, 21212131, https://doi.org/10.1175/JTECH-D-13-00007.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part II: Warm- and cold-season applications. J. Oper. Meteor., 1, 243264, https://doi.org/10.15191/nwajom.2013.0120.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. Baker, Q. Mo, and H. Jonsson, 2006: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, https://doi.org/10.1175/JTECH1927.1.

    • Search Google Scholar
    • Export Citation
  • Leinonen, J., and W. Szyrmer, 2015: Radar signatures of snowflake riming: A modeling study. Earth Space Sci., 2, 346358, https://doi.org/10.1002/2015EA000102.

    • Search Google Scholar
    • Export Citation
  • Leinonen, J., D. Moisseev, and T. Nousiainen, 2013: Linking snowflake microstructure to multi-frequency radar observations. J. Geophys. Res. Atmos., 118, 32593270, https://doi.org/10.1002/jgrd.50163.

    • Search Google Scholar
    • Export Citation
  • Liao, L., and R. Meneghini, 2000: Investigation of the dielectric constants of inhomogeneous air-ice and snow-water spheres. Proc. IEEE 2000 Int. Geoscience and Remote Sensing Symp., Honolulu, HI, IEEE, 18041806, https://doi.org/10.1109/IGARSS.2000.858129.

  • Liao, L., and R. Meneghini, 2016: A dual-wavelength radar technique to detect hydrometeor phases. IEEE Trans. Geosci. Remote Sens., 54, 72927298, https://doi.org/10.1109/TGRS.2016.2599022.

    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, T. Iguchi, and A. Detwiler, 2005: Use of dual-wavelength radar for snow parameter estimates. J. Atmos. Oceanic Technol., 22, 14941506, https://doi.org/10.1175/JTECH1808.1.

    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., T. Manabe, and G. A. Hufford, 1989: Millimeter-wave attenuation and delay rates due to fog/cloud conditions. IEEE Trans. Antennas Propag., 37, 1612–1617, https://doi.org/10.1109/8.45106.

    • Search Google Scholar
    • Export Citation
  • Mason, S. L., C. J. Chiu, R. J. Hogan, D. Moisseev, and S. Kneifel, 2018: Retrievals of riming and snow density from vertically pointing Doppler radars. J. Geophys. Res. Atmos., 123, 13 80713 834, https://doi.org/10.1029/2018JD028603.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1992: Radar reflectivity in snowfall. IEEE Trans. Geosci. Remote Sens., 30, 454461, https://doi.org/10.1109/36.142923.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1998: A dual-wavelength radar method to measure snowfall rate. J. Appl. Meteor., 37, 15101521, https://doi.org/10.1175/1520-0450(1998)037<1510:ADWRMT>2.0.CO;2.

  • McFarquhar, G. M., M. S. Timlin, R. M. Rauber, B. F. Jewett, J. A. Grim, and D. P. Jorgensen, 2007: Vertical variability of cloud hydrometeors in the stratiform region of mesoscale convective systems and bow echoes. Mon. Wea. Rev., 135, 34053428, https://doi.org/10.1175/MWR3444.1.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., and L. Liao, 2000: Effective dielectric constants of mixed-phase hydrometeors. J. Atmos. Oceanic Technol., 17, 628640, https://doi.org/10.1175/1520-0426(2000)017<0628:EDCOMP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nguyen, C. M., M. Wolde, A. Battaglia, L. Nichman, N. Bliankinshtein, S. Haimov, K. Bala, and D. Schuettemeyer, 2022: Coincident in situ and triple-frequency radar airborne observations in the Arctic. Atmos. Meas. Tech., 15, 775795, https://doi.org/10.5194/amt-15-775-2022.

    • Search Google Scholar
    • Export Citation
  • Ori, D., L. von Terzi, M. Karrer, and S. Kneifel, 2021: SnowScatt 1.0: Consistent model of microphysical and scattering properties of rimed and unrimed snowflakes based on the self-similar Rayleigh–Gans approximation. Geosci. Model Dev., 14, 15111531, https://doi.org/10.5194/gmd-14-1511-2021.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and L. O. Grant, 1987: Supercooled liquid water structure of a shallow orographic cloud system in southern Utah. J. Appl. Meteor. Climatol., 26, 208215, https://doi.org/10.1175/1520-0450(1987)026<0208:SLWSOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and S. W. Nesbitt, 2018: Radar Meteorology: A First Course. 1st ed. John Wiley and Sons, 488 pp.

  • Ryzhkov, A. V., S. E. Giangrande, and T. J. Schuur, 2005: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502515, https://doi.org/10.1175/JAM2213.1.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., and Coauthors, 2019: A transformational approach to winter orographic weather modification research: The SNOWIE project. Bull. Amer. Meteor. Soc., 100, 7192, https://doi.org/10.1175/BAMS-D-17-0152.1.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., K. Ikeda, C. Weeks, R. Rasmussen, J. Wolff, and L. Xue, 2020: An assessment of winter orographic precipitation and cloud-seeding potential in Wyoming. J. Appl. Meteor. Climatol., 59, 12171238, https://doi.org/10.1175/JAMC-D-19-0219.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, E. J., S. A. Rutledge, B. Dolan, V. Chandrasekar, and B. L. Cheong, 2014: A dual-polarization radar hydrometeor classification algorithm for winter precipitation. J. Atmos. Oceanic Technol., 31, 14571481, https://doi.org/10.1175/JTECH-D-13-00119.1.

    • Search Google Scholar
    • Export Citation
  • Tridon, F., and Coauthors, 2019: The microphysics of stratiform precipitation during OLYMPEX: Compatibility between triple-frequency radar and airborne in situ observations. J. Geophys. Res. Atmos., 124, 87648792, https://doi.org/10.1029/2018JD029858.

    • Search Google Scholar
    • Export Citation
  • Tripp, A., S. Haimov, A. Pazmany, B. Geerts, and J. R. French, 2017: Calibrating the airborne Ka-band precipitation radar aboard the University of Wyoming King Air research aircraft. 38th Radar Meteorology Conf., Chicago, IL, Amer. Meteor. Soc., 32, https://ams.confex.com/ams/38RADAR/webprogram/Paper321210.html.

  • Ulaby, F. T., R. K. Moore, and A. K. Fung, 1981: Microwave Remote Sensing: Active and Passive. Vol. 1. Artech House, 456 pp.

  • University of Wyoming Research Flight Center, 2017a: Flight level data from the University of Wyoming King Air during the Seeded and Natural Orographic Wintertime Clouds—The Idaho Experiment (SNOWIE) project, version 1.0. University of Wyoming Dept. of Atmospheric Science, accessed 15 January 2021, https://doi.org/10.15786/M2MW9F.

  • University of Wyoming Research Flight Center, 2017b: Wyoming Cloud Radar data from the University of Wyoming King Air during the University of Wyoming King Air during the Seeded and Natural Orographic Wintertime Clouds—The Idaho Experiment (SNOWIE) project, version 1.0. University of Wyoming Dept. of Atmospheric Science, accessed 15 January 2021, https://doi.org/10.15786/M2CD4J.

  • Vali, G., and S. Haimov, 2001: Observed extinction by clouds at 95 GHz. IEEE Trans. Geosci. Remote Sens., 39, 190193, https://doi.org/10.1109/36.898682.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., G. Zhang, and M. K. Politovich, 2001: An assessment of droplet size and liquid water content derived from dual-wavelength radar measurements to the application of aircraft icing detection. J. Atmos. Oceanic Technol., 18, 17871798, https://doi.org/10.1175/1520-0426(2001)018<1787:AAODSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., G. M. Heymsfield, L. Li, and A. J. Heymsfield, 2005: Retrieving optically thick ice cloud microphysical properties by using airborne dual-wavelength radar measurements. J. Geophys. Res., 110, D19201, https://doi.org/10.1029/2005JD005969.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, https://doi.org/10.1175/BAMS-D-11-00044.1.

    • Search Google Scholar
    • Export Citation
  • Weeks, C., 2017: Radiometer data at Horseshoe Bend Site, version 1.0. UCAR/NCAR Earth Observing Laboratory, accessed 17 May 2021, https://doi.org/10.5065/D6VT1QTS.

  • Wendisch, M., and J.-L. Brenquier, 2013: Airborne Measurements for Environmental Research: Methods and Instruments. John Wiley and Sons, 641 pp.

  • Xue, L., and Coauthors, 2022: Comparison between observed and simulated AgI seeding impacts in a well-observed case from the SNOWIE field program. J. Appl. Meteor. Climatol., 61, 345367, https://doi.org/10.1175/JAMC-D-21-0103.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 273 273 18
Full Text Views 68 68 3
PDF Downloads 97 97 7

Estimating Microphysics Properties in Ice-Dominated Clouds from Airborne Ka–W-band Dual-Wavelength Ratio Reflectivity Factor in Close Proximity to In Situ Probes

Coltin GrasmickaDepartment of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming

Search for other papers by Coltin Grasmick in
Current site
Google Scholar
PubMed
Close
,
Bart GeertsaDepartment of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
,
Jeffrey R. FrenchaDepartment of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming

Search for other papers by Jeffrey R. French in
Current site
Google Scholar
PubMed
Close
,
Samuel HaimovaDepartment of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming

Search for other papers by Samuel Haimov in
Current site
Google Scholar
PubMed
Close
, and
Robert M. RauberbDepartment of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Robert M. Rauber in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Properties of frozen hydrometeors in clouds remain difficult to sense remotely. Estimates of number concentration, distribution shape, ice particle density, and ice water content are essential for connecting cloud processes to surface precipitation. Progress has been made with dual-frequency radars, but validation has been difficult because of lack of particle imaging and sizing observations collocated with the radar measurements. Here, data are used from two airborne profiling (up and down) radars, the W-band Wyoming Cloud Radar and the Ka-band Profiling Radar, allowing for Ka–W-band dual-wavelength ratio (DWR) profiles. The aircraft (the University of Wyoming King Air) also carried a suite of in situ cloud and precipitation probes. This arrangement is optimal for relating the “flight-level” DWR (an average from radar gates below and above flight level) to ice particle size distributions measured by in situ optical array probes, as well as bulk properties such as minimum snow particle density and ice water content. This comparison reveals a strong relationship between DWR and the ice particle median-volume diameter. An optimal range of DWR values ensures the highest retrieval confidence, bounded by the radars’ relative calibration and DWR saturation, found here to be about 2.5–7.5 dB. The DWR-defined size distribution shape is used with a Mie scattering model and an experimental mass–diameter relationship to test retrievals of ice particle concentration and ice water content. Comparison with flight-level cloud-probe data indicate good performance, allowing microphysical interpretations for the rest of the vertical radar transects.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Coltin Grasmick, cgrasmic@uwyo.edu

Abstract

Properties of frozen hydrometeors in clouds remain difficult to sense remotely. Estimates of number concentration, distribution shape, ice particle density, and ice water content are essential for connecting cloud processes to surface precipitation. Progress has been made with dual-frequency radars, but validation has been difficult because of lack of particle imaging and sizing observations collocated with the radar measurements. Here, data are used from two airborne profiling (up and down) radars, the W-band Wyoming Cloud Radar and the Ka-band Profiling Radar, allowing for Ka–W-band dual-wavelength ratio (DWR) profiles. The aircraft (the University of Wyoming King Air) also carried a suite of in situ cloud and precipitation probes. This arrangement is optimal for relating the “flight-level” DWR (an average from radar gates below and above flight level) to ice particle size distributions measured by in situ optical array probes, as well as bulk properties such as minimum snow particle density and ice water content. This comparison reveals a strong relationship between DWR and the ice particle median-volume diameter. An optimal range of DWR values ensures the highest retrieval confidence, bounded by the radars’ relative calibration and DWR saturation, found here to be about 2.5–7.5 dB. The DWR-defined size distribution shape is used with a Mie scattering model and an experimental mass–diameter relationship to test retrievals of ice particle concentration and ice water content. Comparison with flight-level cloud-probe data indicate good performance, allowing microphysical interpretations for the rest of the vertical radar transects.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Coltin Grasmick, cgrasmic@uwyo.edu
Save