• Allen, J. T., D. A. Smeed, A. J. G. Nurser, J. W. Zhang, and M. Rixen, 2001: Diagnosis of vertical velocities with the QG omega equation: An examination of the errors due to sampling strategy. Deep-Sea Res. I, 48, 315346, https://doi.org/10.1016/S0967-0637(00)00035-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Astraldi, M., G. P. Gasparini, G. M. R. Manzella, and T. S. Hopkins, 1990: Temporal variability of currents in the eastern Ligurian Sea. J. Geophys. Res., 95, 15151522, https://doi.org/10.1029/JC095iC02p01515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrillon, S., 2019: FUMSECK cruise report. FUMSECK Rep., 33 pp., https://archimer.ifremer.fr/doc/00636/74854/.

    • Crossref
    • Export Citation
  • Bower, A. S., and T. Rossby, 1989: Evidence of cross-frontal exchange processes in the Gulf Stream based in isopycnal RAFOS float data. J. Phys. Oceanogr., 19, 11771190, https://doi.org/10.1175/1520-0485(1989)019<1177:EOCFEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyd, P. W., H. Claustre, M. Levy, D. A. Siegel, and T. Weber, 2019: Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature, 568, 327335, https://doi.org/10.1038/s41586-019-1098-2.

    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., and Y. Cheng, 2017: Contribution of sub-mesoscales to the vertical velocity: The ω-equation. Ocean Modell., 115, 7076, https://doi.org/10.1016/j.ocemod.2017.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and Coauthors, 2017: Ocean convergence and the dispersion of flotsam. Proc. Natl. Acad. Sci. USA, 115, 11621167, https://doi.org/10.1073/pnas.1718453115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doglioli, A., 2015: OSCAHR cruise, RV Téthys II. Campagnes Océanographiques Françaises, https://campagnes.flotteoceanographique.fr/campagnes/15008800/.

    • Crossref
    • Export Citation
  • Esposito, A., and G. Manzella, 1982: Current circulation in the Ligurian Sea. Elsevier Oceanogr. Ser., 34, 187203, https://doi.org/10.1016/S0422-9894(08)71245-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiekas, V., H. Leach, K.-J. Mirbach, and J. D. Woods, 1994: Mesoscale instability and upwelling. Part 1: Observations at the North Atlantic Intergyre Front. J. Phys. Oceanogr., 24, 17501758, https://doi.org/10.1175/1520-0485(1994)024<1750:MIAUPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Firing, E., and R. Gordon, 1990: Deep ocean acoustic Doppler current profiling. Proc. IEEE Fourth Working Conf. on Current Measurements, Clinton, MD, IEEE, 192201, https://doi.org/10.1109/CURM.1990.110905.

    • Crossref
    • Export Citation
  • Fischer, J., and M. Visbeck, 1993: Velocity profiling with self-contained ADCPs. J. Atmos. Oceanic Technol., 10, 764773, https://doi.org/10.1175/1520-0426(1993)010<0764:DVPWSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frajka-Williams, E., C. C. Eriksen, P. B. Rhines, and R. R. Harcourt, 2011: Determining vertical water velocities from Seaglider. J. Atmos. Oceanic Technol., 28, 16411656, https://doi.org/10.1175/2011JTECHO830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuda, J.-L., F. Marin, F. Durand, and T. Terre, 2013: Diagnosing ocean vertical velocities off New Caledonia from a SPRAY glider. General Assembly 2013, Vienna, Austria, EGU, 9721, https://meetingorganizer.copernicus.org/EGU2013/EGU2013-9721.pdf.

    • Crossref
    • Export Citation
  • Giordani, H., L. Prieur, and G. Caniaux, 2006: Advanced insights into sources of vertical velocity in the ocean. Ocean Dyn., 56, 513524, https://doi.org/10.1007/s10236-005-0050-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., and G. Lapeyre, 2009: The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci., 1, 351375, https://doi.org/10.1146/annurev.marine.010908.163704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., D. Iovino, L. Resplandy, P. Klein, G. Madec, A.-M. Tréguier, S. Masson, and K. Takahashi, 2012: Large-scale impacts of submesoscale dynamics on phytoplankton: Local and remote effects. Ocean Modell., 43–44, 7793, https://doi.org/10.1016/j.ocemod.2011.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. J. S. Franks, and K. S. Smith, 2018: The role of submesoscale currents in structuring marine ecosystems. Nat. Commun., 9, 4758, https://doi.org/10.1038/s41467-018-07059-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., T. Y. Tang, M. H. Chang, and E. A. D’Asaro, 2005: Energy of nonlinear internal waves in the South China Sea. Geophys. Res. Lett., 32, L05615, https://doi.org/10.1029/2004GL022012.

    • Crossref
    • Export Citation
  • Lindstrom, S. S., and D. P. Watts, 1994: Vertical motion in the Gulf Stream near 68°W. J. Phys. Oceanogr., 24, 23212333, https://doi.org/10.1175/1520-0485(1994)024<2321:VMITGS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., 2016: The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci., 8, 161184, https://doi.org/10.1146/annurev-marine-010814-015912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256, https://doi.org/10.1016/j.ocemod.2006.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Margirier, F., A. Bosse, P. Testor, B. L’Hévéder, L. Mortier, and D. Smeed, 2017: Characterization of convective plumes associated with oceanic deep convection in the northwestern Mediterranean from high-resolution in situ data collected by gliders. J. Geophys. Res. Oceans, 122, 98149826, https://doi.org/10.1002/2016JC012633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, A. P., K. J. Richards, and M. J. R. Fasham, 2001: Phytoplankton production and community structure in an unstable frontal region. J. Mar. Syst., 28, 6589, https://doi.org/10.1016/S0924-7963(00)00084-1.

    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., 2016: Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annu. Rev. Mar. Sci., 8, 125159, https://doi.org/10.1146/annurev-marine-010814-015606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

    • Crossref
    • Export Citation
  • Meloni, M., J. Bouffard, A. M. Doglioli, A. A. Petrenko, and G. Valladeau, 2019: Toward science-oriented validations of coastal altimetry: Application to the Ligurian Sea. Remote Sens. Environ., 224, 275288, https://doi.org/10.1016/j.rse.2019.01.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merckelbach, L., D. Smeed, and G. Griffiths, 2010: Vertical water velocities from underwater gliders. J. Atmos. Oceanic Technol., 27, 547563, https://doi.org/10.1175/2009JTECHO710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Millot, C., 1999: Circulation in the western Mediterranean Sea. J. Mar. Syst., 20, 423442, https://doi.org/10.1016/S0924-7963(98)00078-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petrenko, A. A., 2003: Variability of circulation features in the Gulf of Lion NW Mediterranean Sea. Importance of inertial currents. Oceanol. Acta, 26, 323338, https://doi.org/10.1016/S0399-1784(03)00038-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinot, J.-M., J. Tintoré, and D.-P. Wang, 1996: A study of the omega equation for diagnosing vertical motions at ocean fronts. J. Mar. Res., 54, 239259, https://doi.org/10.1357/0022240963213358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., and L. A. Regier, 1992: Vorticity and vertical circulation at an ocean front. J. Phys. Oceanogr., 22, 609625, https://doi.org/10.1175/1520-0485(1992)022<0609:VAVCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K., E. Kunze, J. Hummon, and E. Firing, 2002: The finescale response of lowered ADCP velocity profiles. J. Atmos. Oceanic Technol., 19, 205224, https://doi.org/10.1175/1520-0426(2002)019<0205:TFROLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rousselet, L., and Coauthors, 2019: Vertical motions and their effects on a biogeochemical tracer in a cyclonic structure finely observed in the Ligurian Sea. J. Geophys. Res. Oceans, 124, 35613574, https://doi.org/10.1029/2018JC014392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz, S., and Coauthors, 2019: Effects of oceanic mesoscale and submesoscale frontal processes on the vertical transport of phytoplankton. J. Geophys. Res. Oceans, 124, 59996014, https://doi.org/10.1029/2019JC015034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardou, J., M. Etienne, and V. Andersen, 1996: Seasonal abundance and vertical distributions of macroplankton and micronekton in the northwestern Mediterranean Sea. Oceanol. Acta., 19, 645656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., P. Klein, B. Qiu, and Y. Sasai, 2014: Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat. Commun., 5, 5636, https://doi.org/10.1038/ncomms6636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F., and K. D. Leaman, 1991: Observations with moored acoustic Doppler current profilers in the convection regime in the Golfe du Lion. J. Phys. Oceanogr., 21, 558574, https://doi.org/10.1175/1520-0485(1991)021<0558:OWMADC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schott, F., M. Visbeck, U. Send, J. Fischer, L. Stramma, and Y. Desaubies, 1996: Observations of deep convection in the Gulf of Lions, northern Mediterranean during the winter of 1991/92. J. Phys. Oceanogr., 26, 505524, https://doi.org/10.1175/1520-0485(1996)026<0505:OODCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shearman, R. K., J. A. Barth, and P. M. Kosro, 1999: Diagnosis of the three-dimensional circulation associated with mesoscale motion in the California Current. J. Phys. Oceanogr., 29, 651670, https://doi.org/10.1175/1520-0485(1999)029<0651:DOTTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steffen, E. L., and E. A. D’Asaro, 2002: Deep convection in the Labrador Sea as observed by Lagrangian floats. J. Phys. Oceanogr., 32, 475492, https://doi.org/10.1175/1520-0485(2002)032<0475:DCITLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Strass, V. H., 1994: Mesoscale instability and upwelling. Part 2: Testing the diagnostics of vertical motion with a three-dimensional ocean front model. J. Phys. Oceanogr., 24, 17591767, https://doi.org/10.1175/1520-0485(1994)024<1759:MIAUPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tarling, G. A., F. Buchholz, and J. B. L. Matthews, 1999: The effect of a lunar eclipse on the vertical migration behaviour of Meganyctiphanes norvegica (crustacea: Euphausiacea) in the Ligurian sea. J. Plankton Res., 21, 14751488, https://doi.org/10.1093/plankt/21.8.1475.

    • Search Google Scholar
    • Export Citation
  • Tarling, G. A., J. B. L. Matthews, P. David, O. Guerin, and F. Buchholz, 2001: The swarm dynamics of northern krill (Meganyctiphanes norvegica) and pteropods (Cavolinia inflexa) during vertical migration in the Ligurian Sea observed by an acoustic Doppler current profiler. Deep-Sea Res. I, 48, 16711686, https://doi.org/10.1016/S0967-0637(00)00105-9.

    • Search Google Scholar
    • Export Citation
  • Tarry, D. R., and Coauthors, 2021: Frontal convergence and vertical velocity measured by drifters in the Alboran Sea. J. Geophys. Res. Oceans, 126, e2020JC016614, https://doi.org/10.1029/2020JC016614.

    • Search Google Scholar
    • Export Citation
  • Thomas, L., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 1738, https://doi.org/10.1029/177GM04.

  • Thurnherr, A. M., 2011: Vertical velocity from LADCP data. IEEE/OES 10th Current, Waves and Turbulence Measurements, Monterey, CA, IEEE, 198204, https://doi.org/10.1109/CWTM.2011.5759552.

  • Tintoré, J., D. Gomis, S. Alonso, and G. Parrilla, 1991: Mesoscale dynamics and vertical motion in the Alboran Sea. J. Phys. Oceanogr., 21, 811823, https://doi.org/10.1175/1520-0485(1991)021<0811:MDAVMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tzortzis, R., and Coauthors, 2021: Impact of moderately energetic fine-scale dynamics on the phytoplankton community structure in the western Mediterranean Sea. Biogeosciences, 18, 64556477, https://doi.org/10.5194/bg-18-6455-2021.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., D. L. Rudnick, N. J. Pennington, R. P. Trask, and J. R. Valdes, 1990: Measuring upper ocean variability from an array of surface moorings in the subtropical convergence zone. J. Atmos. Oceanic Technol., 7, 6884, https://doi.org/10.1175/1520-0426(1990)007<0068:MUOVFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, X., A. C. Naveira Garabato, A. P. Martin, C. E. Buckingham, L. Brannigan, and Z. Su, 2019: An annual cycle of submesoscale vertical flow and restratification in the upper ocean. J. Phys. Oceanogr., 49, 14391461, https://doi.org/10.1175/JPO-D-18-0253.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 386 386 73
Full Text Views 126 126 32
PDF Downloads 129 129 16

Measuring Vertical Velocities with ADCPs in Low-Energy Ocean

Caroline CombyaAix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France

Search for other papers by Caroline Comby in
Current site
Google Scholar
PubMed
Close
,
Stéphanie BarrillonaAix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France

Search for other papers by Stéphanie Barrillon in
Current site
Google Scholar
PubMed
Close
,
Jean-Luc FudaaAix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France

Search for other papers by Jean-Luc Fuda in
Current site
Google Scholar
PubMed
Close
,
Andrea M. DoglioliaAix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France

Search for other papers by Andrea M. Doglioli in
Current site
Google Scholar
PubMed
Close
,
Roxane TzortzisaAix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France

Search for other papers by Roxane Tzortzis in
Current site
Google Scholar
PubMed
Close
,
Gérald GrégoriaAix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France

Search for other papers by Gérald Grégori in
Current site
Google Scholar
PubMed
Close
,
Melilotus ThyssenaAix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France

Search for other papers by Melilotus Thyssen in
Current site
Google Scholar
PubMed
Close
, and
Anne A. PetrenkoaAix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France

Search for other papers by Anne A. Petrenko in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Vertical velocities knowledge is essential to study fine-scale dynamics in the surface layers of the ocean and to understand their impact on biological production mechanisms. However, these vertical velocities have long been neglected, simply parameterized, or considered as not measurable, due mainly to their order of magnitude (less than mm s−1 up to cm s−1), generally much lower than the one of the horizontal velocities (cm s−1 to dm s−1), hence the challenge of their in situ measurement. In this paper, we present an upgraded method for direct in situ measurement of vertical velocities using data from different acoustic Doppler current profilers (ADCPs) associated with CTD probes, and we perform a comparative analysis of the results obtained by this method. The analyzed data were collected during the FUMSECK cruise, from three ADCPs: two Workhorse (conventional ADCPs), one lowered on a carousel and the other deployed in free-fall mode, and one Sentinel V (a new-generation ADCP with four classical beams and a fifth vertical beam), also lowered on a carousel. Our analyses provide profiles of vertical velocities on the order of mm s−1, as expected, with standard deviations of a few mm s−1. While the fifth beam of the Sentinel V exhibits a better accuracy than conventional ADCPs, the free-fall technique provides a more accurate measurement compared to the carousel technique. Finally, this innovative study opens up the possibility to perform simple and direct in situ measurements of vertical velocities, coupling the free-fall technique with a five-beam ADCP.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Caroline Comby, caroline.comby@mio.osupytheas.fr

Abstract

Vertical velocities knowledge is essential to study fine-scale dynamics in the surface layers of the ocean and to understand their impact on biological production mechanisms. However, these vertical velocities have long been neglected, simply parameterized, or considered as not measurable, due mainly to their order of magnitude (less than mm s−1 up to cm s−1), generally much lower than the one of the horizontal velocities (cm s−1 to dm s−1), hence the challenge of their in situ measurement. In this paper, we present an upgraded method for direct in situ measurement of vertical velocities using data from different acoustic Doppler current profilers (ADCPs) associated with CTD probes, and we perform a comparative analysis of the results obtained by this method. The analyzed data were collected during the FUMSECK cruise, from three ADCPs: two Workhorse (conventional ADCPs), one lowered on a carousel and the other deployed in free-fall mode, and one Sentinel V (a new-generation ADCP with four classical beams and a fifth vertical beam), also lowered on a carousel. Our analyses provide profiles of vertical velocities on the order of mm s−1, as expected, with standard deviations of a few mm s−1. While the fifth beam of the Sentinel V exhibits a better accuracy than conventional ADCPs, the free-fall technique provides a more accurate measurement compared to the carousel technique. Finally, this innovative study opens up the possibility to perform simple and direct in situ measurements of vertical velocities, coupling the free-fall technique with a five-beam ADCP.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Caroline Comby, caroline.comby@mio.osupytheas.fr
Save