• Anders, U., and O. Korn, 1999: Model selection in neural networks. Neural Networks, 12, 309323, https://doi.org/10.1016/S0893-6080(98)00117-8.

    • Search Google Scholar
    • Export Citation
  • Boukabara, S., and Coauthors, 2011: MiRS: An all-weather 1DVAR satellite data assimilation and retrieval system. IEEE Trans. Geosci. Remote Sens., 49, 32493272, https://doi.org/10.1109/TGRS.2011.2158438.

    • Search Google Scholar
    • Export Citation
  • Geer, A. J., and P. Bauer, 2011: Observation errors in all‐sky data assimilation. Quart. J. Roy. Meteor. Soc., 137, 20242037, https://doi.org/10.1002/qj.830.

    • Search Google Scholar
    • Export Citation
  • Guo, Y., N. Lu, C. Qi, S. Gu, and J. Xu, 2015: Calibration and validation of Microwave Humidity and Temperature Sounder onboard FY-3C satellite. Chin. J. Geophys., 58, 2031, https://doi.org/10.6038/cjg20150103.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., B. Bell, P. Berrisford, and G. Biavati, 2018a: ERA5 hourly data on pressure levels from 1959 to present. C3S CDS, accessed 14 March 2021, https://doi.org/10.24381/cds.bd0915c6.

  • Hersbach, H., B. Bell, P. Berrisford, G. Biavati, and A. Horányi, 2018b: ERA5 hourly data on single levels from 1959 to present. C3S CDS, accessed 14 March 2021, https://doi.org/10.24381/cds.adbb2d47.

  • Jeoung, H., G. Liu, K. Kim, G. Lee, and E.-K. Seo, 2020: Microphysical properties of three types of snow clouds: Implication for satellite snowfall retrievals. Atmos. Chem. Phys., 20, 14 49114 507, https://doi.org/10.5194/acp-20-14491-2020.

    • Search Google Scholar
    • Export Citation
  • Judge, J., and Coauthors, 2015: Handbook of Frequency Allocations and Spectrum Protection for Scientific Uses. 2nd ed. National Academies Press, 280 pp.

  • Katsumata, M., H. Uyeda, K. Iwanami, and G. Liu, 2000: The response of 36- and 89-GHz microwave channels to convective snow clouds over ocean: Observation and modeling. J. Appl. Meteor. Climatol., 39, 23222335, https://doi.org/10.1175/1520-0450(2000)039<2322:TROAGM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, E., C.-H. J. Lyu, K. Anderson, R. V. Leslie, and W. J. Blackwell, 2014: S-NPP ATMS instrument prelaunch and on-orbit performance evaluation. J. Geophys. Res. Atmos., 119, 56535670, https://doi.org/10.1002/2013JD020483.

    • Search Google Scholar
    • Export Citation
  • Lawrence, R., L. Bing, S. Harrah, Y. Hu, P. Hunt, and C. Lipp, 2011: Initial flight test results of differential absorption barometric radar for remote sensing of sea surface air pressure. J. Quant. Spectrosc. Radiat. Transfer, 112, 247253, https://doi.org/10.1016/j.jqsrt.2010.06.001.

    • Search Google Scholar
    • Export Citation
  • Lerner, J. A., E. Weisz, and G. Kirchengast, 2002: Temperature and humidity retrieval from simulated Infrared Atmospheric Sounding Interferometer (IASI) measurements. J. Geophys. Res., 107, D144189, https://doi.org/10.1029/2001JD900254.

  • Le Vine, D. M., 2019: RFI and remote sensing of the Earth from space. J. Astron. Instrum., 8, 1940001, https://doi.org/10.1142/S2251171719400014.

    • Search Google Scholar
    • Export Citation
  • Lin, B., Y. Hu, S. Harrah, R. Neece, R. Lawrence, and D. Fralick, 2006: The feasibility of radar-based remote sensing of barometric pressure. NASA Langley Research Center Rep., 54 pp.

  • Liu, G., 1998: A fast and accurate model for microwave radiance calculations. J. Meteor. Soc. Japan, 76, 335343, https://doi.org/10.2151/jmsj1965.76.2_335.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2004: Approximation of single scattering properties of ice and snow particles for high microwave frequencies. J. Atmos. Sci., 61, 24412456, https://doi.org/10.1175/1520-0469(2004)061<2441:AOSSPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, G., and J. A. Curry, 2000: Determination of ice water path and mass median particle size using multichannel microwave measurements. J. Appl. Meteor. Climatol., 39, 13181329, https://doi.org/10.1175/1520-0450(2000)039<1318:DOIWPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marchuk, G. I., 1964: Equation for the value of information from weather satellite and formulation of inverse problems. Cosmic Res., 2, 394408.

    • Search Google Scholar
    • Export Citation
  • Marzban, C., 2003: Neural networks for postprocessing model output: ARPS. Mon. Wea. Rev., 131, 11031111, https://doi.org/10.1175/1520-0493(2003)131<1103:NNFPMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Misra, S., and P. De Matthaeis, 2014: Passive remote sensing and radio frequency interference (RFI): An overview of spectrum allocations and RFI management algorithms. IEEE Geosci. Remote Sens. Mag., 2, 6873, https://doi.org/10.1109/MGRS.2014.2320879.

    • Search Google Scholar
    • Export Citation
  • Mitchell, R. M., and D. M. O’Brien, 1987: Error estimates for passive satellite measurement of surface pressure using absorption in the a band of oxygen. J. Atmos. Sci., 44, 19811990, https://doi.org/10.1175/1520-0469(1987)044<1981:EEFPSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Piyush, D. N., J. Satapathy, and J. Srinivasan, 2019: Remote sensing of cloud ice water path from SAPHIR microwave sounder onboard Megha-Tropiques. Asia-Pac. J. Atmos. Sci., 55, 135144, https://doi.org/10.1007/s13143-018-0084-1.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., N. Fourrié, D. Chafäi, and P. Prunet, 2002: Channel selection methods for Infrared Atmospheric Sounding Interferometer radiances. Quart. J. Roy. Meteor. Soc., 128, 10111027, https://doi.org/10.1256/0035900021643638.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 1998: Information content and optimisation of high spectral resolution remote measurements. Adv. Space Res., 21, 361367, https://doi.org/10.1016/S0273-1177(97)00915-0.

    • Search Google Scholar
    • Export Citation
  • Sreerekha, T. R., S. J. English, and P. J. Rayer, 2007: Report on oxygen sounding channel frequencies and polarisations. EUMETSAT Rep. EUM/CO/06/1557/PSF, 37 pp., https://www.eumetsat.int/media/8197.

  • Ssenyunzi, R. C., B. Oruru, F. M. D’ujanga, E. Realini, S. Barindelli, G. Tagliaferro, A. von Engeln, and N. van de Giesen, 2020: Performance of ERA5 data in retrieving precipitable water vapour over East African tropical region. Adv. Space Res., 65, 18771893, https://doi.org/10.1016/j.asr.2020.02.003.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. D. Barnet, and J. M. Blaisdell, 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41, 390409, https://doi.org/10.1109/TGRS.2002.808236.

    • Search Google Scholar
    • Export Citation
  • Tang, K., H. Zhu, P. Ni, R. Li, and C. Fan, 2021: Retrieving land surface temperature from Chinese FY-3D MERSI-2 data using an operational split window algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14, 66396651, https://doi.org/10.1109/JSTARS.2021.3075698.

    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., and D. G. Long, 2015: Microwave Radar and Radiometric Remote Sensing. University of Michigan Press, 984 pp.

  • Wang, W., K. Hocke, and C. Matzler, 2021: Physical retrieval of rain rate from ground-based microwave radiometry. Remote Sens., 13, 2217, https://doi.org/10.3390/rs13112217.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Y. Fu, G. Liu, Q. Liu, and L. Sun, 2009: A new water vapor algorithm for TRMM Microwave Imager (TMI) measurements based on a log linear relationship. J. Geophys. Res., 114, D21304, https://doi.org/10.1029/2008JD011057.

    • Search Google Scholar
    • Export Citation
  • Weaver, W., and C. E. Shannon, 1949: The mathematical theory of information. Math. Gaz., 97, 170–180.

  • Weng, F., and Q. Liu, 2003: Satellite data assimilation in numerical weather prediction models. Part I: Forward radiative transfer and Jacobian modeling in cloudy atmospheres. J. Atmos. Sci., 60, 26332646, https://doi.org/10.1175/1520-0469(2003)060<2633:SDAINW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., X. Dong, L. Liu, and J. He, 2018: Retrieval of barometric pressure from satellite passive microwave observations over the oceans. J. Geophys. Res. Oceans, 123, 43604372, https://doi.org/10.1029/2018JC013847.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., X. Dong, K. K. Hon, and L. Liu, 2019: Tropical cyclone surface pressure field estimation using satellite passive microwave observations over the oceans. J. Geophys. Res. Oceans, 124, 78547872, https://doi.org/10.1029/2019JC015136.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 536 536 21
Full Text Views 105 105 13
PDF Downloads 73 73 16

Optimal Channel Selection of Spaceborne Microwave Radiometer for Surface Pressure Retrieval over Oceans

Zijin ZhangaKey Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing, China

Search for other papers by Zijin Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2803-1389
,
Xiaolong DongaKey Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing, China
bUniversity of Chinese Academy of Sciences, Beijing, China
cInternational Space Science Institute–Beijing, Beijing, China

Search for other papers by Xiaolong Dong in
Current site
Google Scholar
PubMed
Close
, and
Di ZhuaKey Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing, China

Search for other papers by Di Zhu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The O2-band channel configuration of existing microwave radiometers is not optimal for surface pressure retrieval, which limits the surface pressure retrieval accuracy. In this study, we present the results of theoretically what might be the optimal microwave channels for surface pressure retrieval. An improved iterative selection method is used to select the channels that contain the highest cumulative content of surface pressure information. The selected optimal channel set comprises 16 channels, among which 10 channels are centered at the 50–60 GHz oxygen absorption band and 6 channels are centered around the 118.75 GHz oxygen absorption line. Two representative spaceborne microwave radiometers are used for comparisons, the Advanced Technology Microwave Sounder (ATMS) on board the Suomi National Polar-Orbiting Partnership (SNPP) satellite and the Microwave Humidity and Temperature Sounder (MWHTS) on board the Chinese Fengyun-3C (FY-3C) satellite. The results of information content analysis show that the optimal channel set contains more surface pressure information than that of the combination of SNPP/ATMS and FY-3C/MWHTS (SNPP/ATMS+FY-3C/MWHTS) channels. A representative dataset from the ERA5 data is input into the plane-parallel Microwave Radiative Transfer model to obtain the simulated brightness temperature observations of the selected optimal channels and the SNPP/ATMS+FY-3C/MWHTS channels. Using the simulated observations, retrieval experiments are performed. Experimental results show that retrieval accuracies of the optimal channel set are 1.09 and 1.64 hPa for clear-sky and cloudy conditions, respectively. The retrieval accuracies are 0.60 and 0.65 hPa better than that of the SNPP/ATMS+FY-3C/MWHTS channels for clear-sky and cloudy conditions, respectively.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaolong Dong, dongxiaolong@mirslab.cn

Abstract

The O2-band channel configuration of existing microwave radiometers is not optimal for surface pressure retrieval, which limits the surface pressure retrieval accuracy. In this study, we present the results of theoretically what might be the optimal microwave channels for surface pressure retrieval. An improved iterative selection method is used to select the channels that contain the highest cumulative content of surface pressure information. The selected optimal channel set comprises 16 channels, among which 10 channels are centered at the 50–60 GHz oxygen absorption band and 6 channels are centered around the 118.75 GHz oxygen absorption line. Two representative spaceborne microwave radiometers are used for comparisons, the Advanced Technology Microwave Sounder (ATMS) on board the Suomi National Polar-Orbiting Partnership (SNPP) satellite and the Microwave Humidity and Temperature Sounder (MWHTS) on board the Chinese Fengyun-3C (FY-3C) satellite. The results of information content analysis show that the optimal channel set contains more surface pressure information than that of the combination of SNPP/ATMS and FY-3C/MWHTS (SNPP/ATMS+FY-3C/MWHTS) channels. A representative dataset from the ERA5 data is input into the plane-parallel Microwave Radiative Transfer model to obtain the simulated brightness temperature observations of the selected optimal channels and the SNPP/ATMS+FY-3C/MWHTS channels. Using the simulated observations, retrieval experiments are performed. Experimental results show that retrieval accuracies of the optimal channel set are 1.09 and 1.64 hPa for clear-sky and cloudy conditions, respectively. The retrieval accuracies are 0.60 and 0.65 hPa better than that of the SNPP/ATMS+FY-3C/MWHTS channels for clear-sky and cloudy conditions, respectively.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaolong Dong, dongxiaolong@mirslab.cn
Save