• Albuquerque, J., J. Antolínezm, A. Rueda, F. J. Méndez, and G. Coco, 2018: Directional correction of modeled sea and swell wave heights using satellite altimeter data. Ocean Modell., 131, 103114, https://doi.org/10.1016/j.ocemod.2018.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alvera-Azcárate, A., A. Barth, M. Rixen, and J. Beckers, 2005: Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: Application to the Adriatic sea surface temperature. Ocean Modell., 9, 325346, https://doi.org/10.1016/j.ocemod.2004.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., L. Marié, N. Rascle, P. Forget, and A. Roland, 2009: Observation and estimation of Lagrangian, Stokes, and Eulerian currents induced by wind and waves at the sea surface. J. Phys. Oceanogr., 39, 28202838, https://doi.org/10.1175/2009JPO4169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berta, M., and Coauthors, 2018: Wind-induced variability in the Northern Current (northwestern Mediterranean sea) as depicted by a multi-platform observing system. Ocean Sci., 14, 689710, https://doi.org/10.5194/os-14-689-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourg, N., and A. Molcard, 2021: Northern boundary current variability and mesoscale dynamics: A long-term HFR monitoring in the north-western Mediterranean Sea. Ocean Dyn., 71, 851870, https://doi.org/10.1007/s10236-021-01466-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brousseau, P., Y. Seity, D. Ricard, and J. Léeger, 2016: Improvement of the forecast of convective activity from the AROME-France system. Quart. J. Roy. Meteor. Soc., 142, 22312243, https://doi.org/10.1002/qj.2822.

    • Search Google Scholar
    • Export Citation
  • Bye, J. A., 1967: The wave-drift current. J. Mar. Res., 25, 95102.

  • Carret, A., F. Birol, C. Estournel, B. Zakardjian, and T. Testor, 2019: Synergy between in situ and altimetry data to observe and study Northern Current variations (NW Mediterranean Sea). Ocean Sci., 15, 269290, https://doi.org/10.5194/os-2018-76.

    • Search Google Scholar
    • Export Citation
  • Chang, Y. C., G. Y. Chen, R. S. Tseng, L. R. Centurioni, and P. C. Chu, 2012: Observed near-surface currents under high wind speeds. J. Geophys. Res., 117, C11026, https://doi.org/10.1029/2012JC007996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavanne, C., 2018: Do high-frequency radars measure the wave-induced Stokes drift? J. Atmos. Oceanic Technol., 35, 10231031, https://doi.org/10.1175/JTECH-D-17-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A., and S. Van Gorder, 2018: The relationship of near-surface flow, Stokes drift and the wind stress. J. Geophys. Res. Oceans, 123, 46804692, https://doi.org/10.1029/2018JC014102.

    • Search Google Scholar
    • Export Citation
  • Donlon, C., 2013: ESA Data User Element (DUE) GlobCurrent user requirement document (URD). ESA Tech. Rep. EOP-SM/2451/CD-cd, 137 pp.

    • Crossref
    • Export Citation
  • Dritschel, D. G., N. Paldor, and A. Constantin, 2020: The Ekman spiral for piecewise-uniform viscosity. Ocean Sci., 16, 10891093, https://doi.org/10.5194/os-16-1089-2020.

    • Search Google Scholar
    • Export Citation
  • Dumas, D., and C.-A. Guérin, 2020: Self-calibration and antenna grouping for bistatic oceanographic high-frequency radars. arXiv, 2005.10528, https://arxiv.org/abs/2005.10528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dumas, D., A. Gramoullé, C.-A. Guérin, A. Molcard, Y. Ourmières, and B. Zakardjian, 2020: Multistatic estimation of high-frequency radar surface currents in the region of Toulon. Ocean Dyn., 70, 14851503, https://doi.org/10.1007/s10236-020-01406-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandez, D. M., J. F. Vesecky, and C. Teague, 1996: Measurements of upper ocean surface current shear with high-frequency radar. J. Geophys. Res., 101, 28 61528 625, https://doi.org/10.1029/96JC03108.

    • Search Google Scholar
    • Export Citation
  • Garrat, J. R., 1997: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

    • Crossref
    • Export Citation
  • Guérin, C.-A., D. Dumas, A. Gramoullé, C. Quentin, M. Saillard, and A. Molcard, 2019: The multistatic oceanographic HF radar network in Toulon. IEEE 2019 Int. Radar Conf., Toulon, France, IEEE, https://doi.org/10.1109/RADAR41533.2019.

    • Crossref
    • Export Citation
  • Guihou, K., J. Marmain, Y. Ourmières, A. Molcard, B. Zakardjian, and P. Forget, 2013: A case study of the mesoscale dynamics in the north-western Mediterranean Sea: A combined data–model approach. Ocean Dyn., 63, 793808, https://doi.org/10.1007/s10236-013-0619-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernández-Carrasco, I., and A. Orfila, 2018: The role of an intense front on the connectivity of the western Mediterranean Sea: The Cartagena-Tenes front. J. Geophys. Res. Oceans, 123, 43984422, https://doi.org/10.1029/2017JC013613.

    • Search Google Scholar
    • Export Citation
  • Hernández-Carrasco, I., L. Solabarrieta, A. Rubio, G. Esnaola, E. Reyes, and A. Orfila, 2018: Impact of HF radar current gap-filling methodologies on the Lagrangian assessment of coastal dynamics. Ocean Sci., 14, 827847, https://doi.org/10.5194/os-14-827-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, P., and M. Li, 2012: Dynamics of wind-driven circulation in a shallow lagoon with strong horizontal density gradient. J. Geophys. Res., 117, C05013, https://doi.org/10.1029/2011JC007475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenyon, K., 1969: Stokes drift for random gravity waves. J. Geophys. Res., 74, 69916994, https://doi.org/10.1029/JC074i028p06991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirwan, A. D., G. McNally, S. Pazan, and R. Wert, 1979: Analysis of surface current response to wind. J. Phys. Oceanogr., 9, 401412, https://doi.org/10.1175/1520-0485(1979)009<0401:AOSCRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, M., 1994: A mechanism for the accumulation of floating marine debris north of Hawaii. J. Phys. Oceanogr., 24, 10591064, https://doi.org/10.1175/1520-0485(1994)024<1059:AMFTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, N., D. L. Cahl, S. C. Crosby, and G. Voulgaris, 2017: Bulk versus spectral wave parameters: Implications on Stokes drift estimates, regional wave modeling, and HF radars applications. J. Phys. Oceanogr., 47, 14131431, https://doi.org/10.1175/JPO-D-16-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundu, P., I. Cohen, and D. Dowling, 2012: Fluid Mechanics. 5th ed. Academic Press, 891 pp.

    • Crossref
    • Export Citation
  • Lira-Loarca, A., A. Cáceres-Euse, F. De-Leo, and G. Besio, 2022: Wave modeling with unstructured mesh for hindcast, forecast and wave hazard applications in the Mediterranean Sea. Appl. Ocean Res., 122, 103118, https://doi.org/10.1016/j.apor.2022.103118.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and R. H. Weisberg, 2005a: Momentum balance diagnoses for the west Florida shelf. Cont. Shelf Res., 25, 20542074, https://doi.org/10.1016/j.csr.2005.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and R. H. Weisberg, 2005b: Patterns of ocean current variability on the west Florida shelf using the self-organizing map. J. Geophys. Res., 110, C06003, https://doi.org/10.1029/2004JC002786.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and R. H. Weisberg, 2007: Ocean currents and sea surface heights estimated across the west Florida shelf. J. Phys. Oceanogr., 37, 16971713, https://doi.org/10.1175/JPO3083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. H. Weisberg, and C. N. K. Mooers, 2006: Performance evaluation of the self-organizing map for feature extraction. J. Geophys. Res., 111, C05018, https://doi.org/10.1029/2005JC003117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. H. Weisberg, and L. K. Shay, 2007: Current patterns on the west Florida shelf from joint self-organizing map analyses of HF radar and ADCP data. J. Atmos. Oceanic Technol., 24, 702712, https://doi.org/10.1175/JTECH1999.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorente, P., and Coauthors, 2022: Coastal high-frequency radars in the Mediterranean—Part 1: Status of operations and a framework for future development. Ocean Sci., 18, 761795, https://doi.org/10.5194/os-18-761-2022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, Y., and M. L. Heron, 2008: The influence of fetch on the response of surface currents to wind studies by HF ocean surface radar. J. Phys. Oceanogr., 38, 11071121, https://doi.org/10.1175/2007JPO3709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, E., K. Maamaatuaiahutapua, and V. Taillandier, 2009: Floating marine debris surface drift: Convergence and accumulation toward the South Pacific subtropical gyre. Mar. Pollut. Bull., 58, 13471355, https://doi.org/10.1016/j.marpolbul.2009.04.022.

    • Search Google Scholar
    • Export Citation
  • Mazoyer, C., H. Vanneste, C. Dufresne, Y. Ourmières, M. G. Magaldi, and A. Molcard, 2020: Impact of wind-driven circulation on contaminant dispersion in a semi-enclosed bay. Estuarine Coastal Shelf Sci., 233, 106529, https://doi.org/10.1016/j.ecss.2019.106529.

    • Search Google Scholar
    • Export Citation
  • Mihanović, H., S. Cosoli, I. Vilibić, D. Ivankovi, V. Dadić, and M. Gačić, 2011: Surface current patterns in the northern Adriatic extracted from high-frequency radar data using self-organizing map analysis. J. Geophys. Res., 116, C08033, https://doi.org/10.1029/2011JC007104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Millot, C., 1989: La circulation générale en Méditerranée occidentale: Aperçu de nos connaissances et projets d’études. Cont. Shelf Res., 98, 497515, https://doi.org/10.3406/geo.1989.20925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Millot, C., 1999: Circulation in the western Mediterranean Sea. J. Mar. Syst., 20, 423442, https://doi.org/10.1016/S0924-7963(98)00078-5.

  • Molcard, A., A. Gramoullé, C. Mazoyer, N. Bourg, and Y. Ourmières, 2021: Dynamics and transport from the boundary Northern Current toward the Toulon Bay: Multi-platform observations and downscaling modelling approaches. Ocean Dyn., 71, 9931009, https://doi.org/10.1007/s10236-021-01479-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morales-Márquez, V., I. Hernández-Carrasco, G. Simarro, V. Rossi, and A. Orfila, 2021: Regionalizing the impacts of wind and wave-induced currents on surface ocean dynamics: A long-term variability analysis in the Mediterranean Sea. J. Geophys. Res. Oceans, 126, e2020JC017104, https://doi.org/10.1029/2020JC017104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novelli, G., M. Guigand, C. Cousin, E. H. Ryan, N. J. M. Laxague, H. Dai, B. K. Haus, and T. M. Özgökmen, 2017: A biodegradable surface drifter for ocean sampling on a massive scale. J. Atmos. Oceanic Technol., 34, 25092532, https://doi.org/10.1175/JTECH-D-17-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onink, V., D. Wichmann, P. Delandmeter, and E. van Sebille, 2019: The role of Ekman currents, geostrophy, and Stokes drift in the accumulation of floating microplastic. J. Geophys. Res. Oceans, 124, 14741490, https://doi.org/10.1029/2018JC014547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orfila, A., C. P. Urbano-Latorre, J. M. Sayol, S. Gonzalez-Montes, A. Cáceres-Euse, I. Hernández-Carrasco, and A. G. Muñoz, 2021: On the impact of the Caribbean Counter Current in the Guajira upwelling system. Front. Mar. Sci., 8, 626823, https://doi.org/10.3389/fmars.2021.626823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ourmières, Y., B. Zakardjian, K. Béranger, and C. Langlais, 2011: Assessment of a NEMO-based downscaling experiment for the north-western Mediterranean region: Impacts on the Northern Current and comparison with ADCP data and altimetry products. Ocean Modell., 39, 386404, https://doi.org/10.1016/j.ocemod.2011.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ourmières, Y., J. Mansui, A. Molcard, F. Galgani, and P. Isabelle, 2018: The boundary current role on the transport and stranding of floating marine litter: The French Riviera case. Cont. Shelf Res., 155, 1120, https://doi.org/10.1016/j.csr.2018.01.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer-Verlag, 710 pp.

    • Crossref
    • Export Citation
  • Petrenko, A. A., 2003: Variability of circulation features in the Gulf of Lion NW Mediterranean Sea. Importance of inertial currents. Oceanol. Acta, 26, 323338, https://doi.org/10.1016/S0399-1784(03)00038-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polton, J. A., D. M. Lewis, and S. E. Belcher, 2005: The role of wave-induced Coriolis–Stokes forcing on the wind-driven mixed layer. J. Phys. Oceanogr., 35, 444457, https://doi.org/10.1175/JPO2701.1.

    • Search Google Scholar
    • Export Citation
  • Poulain, P.-M., M. Menna, and E. Mauri, 2012: Surface geostrophic circulation of the Mediterranean Sea derived from drifter and satellite altimeter data. J. Phys. Oceanogr., 42, 973990, https://doi.org/10.1175/JPO-D-11-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rascle, N., and F. Ardhuin, 2009: Drift and mixing under the ocean surface revisited: Stratified conditions and model-data comparisons. J. Geophys. Res., 114, C02016, https://doi.org/10.1029/2007JC004466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rey, V., C. Dufresne, J.-L. Fuda, D. Mallarino, T. Missamou, C. Paugam, G. Rougier, and I. Taupier-Letage, 2020: On the use of long-term observation of water level and temperature along the shore for a better understanding of the dynamics: Example of Toulon area, France. Ocean Dyn., 70, 913933, https://doi.org/10.1007/s10236-020-01363-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reyes, E., and Coauthors, 2022: Coastal high-frequency radars in the Mediterranean—Part 2: Applications in support of science priorities and societal needs. Ocean Sci., 18, 797837, https://doi.org/10.5194/os-18-797-2022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rio, M. H., S. Mulet, and N. Picot, 2014: Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys. Res. Lett., 41, 89188925, https://doi.org/10.1002/2014GL061773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roach, C. J., H. E. Phillips, N. L. Bindoff, and S. R. Rintoul, 2015: Detecting and characterizing Ekman currents in the Southern Ocean. J. Phys. Oceanogr., 45, 12051223, https://doi.org/10.1175/JPO-D-14-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sauvage, C., C. L. Brossier, and M.-N. Bouin, 2021: Towards kilometer-scale ocean–atmosphere–wave coupled forecast: A case study on a Mediterranean heavy precipitation event. Atmos. Chem. Phys., 21, 11 85711 887, https://doi.org/10.5194/acp-21-11857-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L., J. Martinez-Pedraja, T. Cook, B. Haus, and R. Weisberg, 2007: High-frequency radar mapping of surface currents using WERA. J. Atmos. Oceanic Technol., 24, 484503, https://doi.org/10.1175/JTECH1985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrira, V. I., and P. Forget, 2015: On the nature of near-inertial oscillations in the uppermost part of the ocean and a possible route toward HF radar probing of stratification. J. Phys. Oceanogr., 45, 26602678, https://doi.org/10.1175/JPO-D-14-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrira, V. I., and R. B. Almelah, 2020: Upper-ocean Ekman current dynamics: A new perspective. J. Fluid Mech., 887, A24, https://doi.org/10.1017/jfm.2019.1059.

    • Search Google Scholar
    • Export Citation
  • Sinha, A., and R. Abernathey, 2021: Estimating ocean surface currents with machine learning. Front. Mar. Sci., 8, 672477, https://doi.org/10.3389/fmars.2021.672477.

    • Search Google Scholar
    • Export Citation
  • Stewart, R., and J. W. Joy, 1974: HF radio measurement of surface currents. Deep-Sea Res., 21, 10371049, https://doi.org/10.1016/0011-7471(74)90066-7.

    • Search Google Scholar
    • Export Citation
  • Tamtare, T., D. Dumont, and C. Chavanne, 2022: The Stokes drift in ocean surface drift prediction. J. Oper. Oceanogr., 15, 156168, https://doi.org/10.1080/1755876X.2021.1872229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolamn, H., 2009: User manual and system documentation of WAVEWATCH III version 3.14. MMAB Rep. 276, 220 pp., http://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf.

  • van der Mheen, M., C. Pattiaratchi, S. Cosoli, and M. Wandres, 2020: Depth-dependent correction for wind-driven drift current in particle tracking applications. Front. Mar. Sci., 7, 305, https://doi.org/10.3389/fmars.2020.00305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vesanto, J., J. Himberg, E. Alhoniemi, and J. Parhankangas, 2000: SOM Toolbox for MATLAB 5. SOM Toolbox Team Rep. A57, 60 pp.

  • Vilibić, I., and Coauthors, 2016: Self-organizing maps-based ocean currents forecasting system. Sci. Rep., 6, 22924, https://doi.org/10.1038/srep22924.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 430 430 34
Full Text Views 129 129 10
PDF Downloads 125 125 14

Breakdown of Near-Surface Sea Current from High-Frequency Radar Data

Alejandro Cáceres-EuseaMIO, Université de Toulon, Aix-Marseille University, CNRS, IRD, Toulon, France
bDepartment of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, Italy

Search for other papers by Alejandro Cáceres-Euse in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8701-3386
,
Anne MolcardaMIO, Université de Toulon, Aix-Marseille University, CNRS, IRD, Toulon, France

Search for other papers by Anne Molcard in
Current site
Google Scholar
PubMed
Close
,
Natacha BourgaMIO, Université de Toulon, Aix-Marseille University, CNRS, IRD, Toulon, France

Search for other papers by Natacha Bourg in
Current site
Google Scholar
PubMed
Close
,
Dylan DumasaMIO, Université de Toulon, Aix-Marseille University, CNRS, IRD, Toulon, France

Search for other papers by Dylan Dumas in
Current site
Google Scholar
PubMed
Close
,
Charles-Antoine GuérinaMIO, Université de Toulon, Aix-Marseille University, CNRS, IRD, Toulon, France

Search for other papers by Charles-Antoine Guérin in
Current site
Google Scholar
PubMed
Close
, and
Giovanni BesiobDepartment of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, Italy

Search for other papers by Giovanni Besio in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To assess the contribution of wind drag and Stokes drift on the near-surface circulation, a methodology to isolate the geostrophic surface current from high-frequency radar data is developed. The methodology performs a joint analysis utilizing wind field and in situ surface currents along with an unsupervised neuronal network. The isolation method seems robust in the light of comparisons with satellite altimeter data, presenting a similar time variability and providing more spatial detail of the currents in the coastal region. Results show that the wind-induced current is around 2.1% the wind speed and deflected from the wind direction in the range [18°, 23°], whereas classical literature suggests higher values. The wave-induced currents can represent more than 13% of the ageostrophic current component as function of the wind speed, suggesting that the Stokes drift needs to be analyzed as an independent term when studying surface sea currents in the coastal zones. The methodology and results presented here could be extended worldwide, as complementary information to improve satellite-derived surface currents in the coastal regions by including the local physical processes recorded by high-frequency radar systems. The assessment of the wave and wind-induced currents have important applications on Lagrangian transport studies.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alejandro Cáceres-Euse, alejandro.caceres-euse@univ-tln.fr

Abstract

To assess the contribution of wind drag and Stokes drift on the near-surface circulation, a methodology to isolate the geostrophic surface current from high-frequency radar data is developed. The methodology performs a joint analysis utilizing wind field and in situ surface currents along with an unsupervised neuronal network. The isolation method seems robust in the light of comparisons with satellite altimeter data, presenting a similar time variability and providing more spatial detail of the currents in the coastal region. Results show that the wind-induced current is around 2.1% the wind speed and deflected from the wind direction in the range [18°, 23°], whereas classical literature suggests higher values. The wave-induced currents can represent more than 13% of the ageostrophic current component as function of the wind speed, suggesting that the Stokes drift needs to be analyzed as an independent term when studying surface sea currents in the coastal zones. The methodology and results presented here could be extended worldwide, as complementary information to improve satellite-derived surface currents in the coastal regions by including the local physical processes recorded by high-frequency radar systems. The assessment of the wave and wind-induced currents have important applications on Lagrangian transport studies.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alejandro Cáceres-Euse, alejandro.caceres-euse@univ-tln.fr
Save