• Adirosi, E., L. Baldini, N. Roberto, P. Gatlin, and A. Tokay, 2016: Improvement of vertical profiles of raindrop size distribution from Micro Rain Radar using 2D video disdrometer measurements. Atmos. Res., 169, 404415, https://doi.org/10.1016/j.atmosres.2015.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, E., R. C. Srivastata, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 135, https://doi.org/10.1029/RG011i001p00001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1985: Simple altitude adjustments to raindrop velocities for Doppler radar analysis. J. Atmos. Oceanic Technol., 2, 468471, https://doi.org/10.1175/1520-0426(1985)002<0468:SAATRV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bradley, E. F., and C. W. Fairall, 2006: A guide to making climate quality meteorological and flux measurements at sea. NOAA Tech. Memo. OAR PSD-311, 44 pp.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685, https://doi.org/10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, D. A., K. S. Gage, W. L. Ecklund, W. M. Angevine, P. E. Johnston, A. C. Riddle, J. Wilson, and C. R. Williams, 1995: Developments in UHF lower tropospheric wind profiling at NOAA’s Aeronomy Laboratory. Radio Sci., 30, 9771001, https://doi.org/10.1029/95RS00649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • COESA, 1976: U.S. Standard Atmosphere, 1976. NOAA, 227 pp.

  • Currier, P. E., S. K. Avery, B. B. Balsley, K. S. Gage, and W. L. Ecklund, 1992: Combined use of 50 MHz and 915 MHz wind profilers in the estimation of raindrop size distributions. Geophys. Res. Lett., 19, 10171020, https://doi.org/10.1029/92GL00191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foote, G. B., and P. S. Du Toit, 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor., 8, 249253, https://doi.org/10.1175/1520-0450(1969)008<0249:TVORA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gatlin, P. N., M. Thurai, V. N. Bringi, W. Petersen, D. Wolff, A. Tokay, L. Carey, and M. Wingo, 2015: Searching for large raindrops: A global summary of two-dimensional video disdrometer observations. J. Appl. Meteor. Climatol., 54, 10691089, https://doi.org/10.1175/JAMC-D-14-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248, https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartten, L. M., P. E. Johnston, V. M. Rodríguez Castro, and P. S. Esteban Pérez, 2019: Postdeployment calibration of a tropical UHF profiling radar via surface- and satellite-based methods. J. Atmos. Oceanic Technol., 36, 17291751, https://doi.org/10.1175/JTECH-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jash, D., E. A. Resmi, C. K. Unnikrishnan, R. K. Sumesh, T. S. Sreekanth, N. Sukumar, and K. K. Ramachandran, 2019: Variation in rain drop size distribution and rain integral parameters during southwest monsoon over a tropical station: An inter-comparison of disdrometer and Micro Rain Radar. Atmos. Res., 217, 2436, https://doi.org/10.1016/j.atmosres.2018.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, P. E., J. R. Jordan, A. B. White, D. A. Carter, D. M. Costa, and T. E. Ayers, 2017: The NOAA FM-CW snow-level radar. J. Atmos. Oceanic Technol., 34, 249267, https://doi.org/10.1175/JTECH-D-16-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markwardt, C. B., 2009: Non-linear least squares fitting in IDL with MPFIT. 18th Annual Conf. on Astronomical Data Analysis Software and Systems, Quebec City, QC, Canada, Astronomical Society of the Pacific, 251254.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., R. C. Langille, and W. M. K. Palmer, 1947: Measurement of rainfall by radar. J. Meteor., 4, 186192, https://doi.org/10.1175/1520-0469(1947)004<0186:MORBR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., W. Hitschfeld, and K. L. S. Gunn, 1955: Advances in radar weather. Adv. Geophys., 2, 156, https://doi.org/10.1016/S0065-2687(08)60310-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nijhuis, A. C. P. O., F. J. Yanovsky, O. Krasnov, C. M. H. Unal, H. W. J. Russchenberg, and A. Yarovoy, 2016: Assessment of the rain drop inertia effect for radar-based turbulence intensity retrievals. Int. J. Microwave Wireless Technol., 8, 835844, https://doi.org/10.1017/S1759078716000660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OTT Hydromet, 2016: Operating instructions present weather sensor OTT Parsivel2. OTT Hydromet Doc. 12-1016, 52 pp., https://www.psl.noaa.gov/data/obs/instruments/OpticalDisdrometerV2.pdf.

    • Search Google Scholar
    • Export Citation
  • Peters, G., B. Fischer, H. Münster, M. Clemens, and A. Wagner, 2005: Profiles of raindrop size distributions as retrieved by Microrain Radars. J. Appl. Meteor., 44, 19301949, https://doi.org/10.1175/JAM2316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Numerical Recipes in C: The Art of Scientific Computing. 2nd ed. Cambridge University Press, 994 pp.

    • Search Google Scholar
    • Export Citation
  • Rajopadhyaya, D. K., P. T. May, R. C. Cifelli, S. K. Avery, C. R. Willams, W. L. Ecklund, and K. S. Gage, 1998 : The effect of vertical air motions on rain rates and median volume diameter determined from combined UHF and VHF wind profiler measurements and comparisons with rain gauge measurements. J. Atmos. Oceanic Technol., 15, 13061319, https://doi.org/10.1175/1520-0426(1998)015<1306:TEOVAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, T. H., M. Thurai, V. N. Bringi, and A. Berne, 2019: Reconstructing the drizzle mode of the raindrop size distribution using double-moment normalization. J. Appl. Meteor. Climatol., 58, 145164, https://doi.org/10.1175/JAMC-D-18-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stacy, E. W., 1962: A generalization of the gamma distribution. Ann. Math. Stat., 33, 11871192, https://doi.org/10.1214/aoms/1177704481.

  • Tapiador, F. J., Z. S. Haddad, and J. Turk, 2014: A probabilistic view on raindrop size distribution modeling: A physical interpretation of rain microphysics . J. Hydrometeor., 15, 427443, https://doi.org/10.1175/JHM-D-13-033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., and V. N. Bringi, 2005: Drop axis ratios from a 2D video disdrometer. J. Atmos. Oceanic Technol., 22, 966978, https://doi.org/10.1175/JTECH1767.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., and V. N. Bringi, 2018: Application of the generalized gamma model to represent the full rain drop size distribution spectra. J. Appl. Meteor. Climatol., 57, 11971210, https://doi.org/10.1175/jamc-d-17-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., P. Gatlin, V. N. Bringi, W. Petersen, P. Kennedy, B. Notaroš, and L. Carey, 2017: Toward completing the raindrop size spectrum: Case studies involving 2D-video disdrometer, droplet spectrometer, and polarimetric radar measurements. J. Appl. Meteor. Climatol., 56, 877896, https://doi.org/10.1175/JAMC-D-16-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., V. Bringi, P. N. Gatlin, W. A. Petersen, and M. T. Wingo, 2019: Measurements and modeling of the full rain drop size distribution. Atmosphere, 10, 39, https://doi.org/10.3390/atmos10010039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., 2002: Simultaneous ambient air motion and raindrop size distributions retrieved from UHF vertical incident profiler observations. Radio Sci., 37, 1024, https://doi.org/10.1029/2000RS002603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., and K. S. Gage, 2009: Raindrop size distribution variability estimated using ensemble statistics. Ann. Geophys., 27, 555567, https://doi.org/10.5194/angeo-27-555-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., and Coauthors, 2014: Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters. J. Appl. Meteor. Climatol., 53, 12821296, https://doi.org/10.1175/JAMC-D-13-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 376 376 45
Full Text Views 93 93 2
PDF Downloads 134 134 2

Rain Drop Size Distributions Estimated from NOAA Snow-Level Radar Data

Paul E. JohnstonaCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
bNOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Paul E. Johnston in
Current site
Google Scholar
PubMed
Close
,
Christopher R. WilliamscColorado Center for Astrodynamics Research, Ann and H. J. Smead Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Christopher R. Williams in
Current site
Google Scholar
PubMed
Close
, and
Allen B. WhitebNOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Allen B. White in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using NOAA’s S-band High-Power Snow-Level Radar (HPSLR), a technique for estimating the rain drop size distribution (DSD) above the radar is presented. This technique assumes the DSD can be described by a four parameter, generalized gamma distribution (GGD). Using the radar’s measured average Doppler velocity spectrum and a value (assumed, measured, or estimated) of the vertical air motion w, an estimate of the GGD is obtained. Four different methods can be used to obtain w. One method that estimates a mean mass-weighted raindrop diameter Dm from the measured reflectivity Z produces realistic DSDs compared to prior literature examples. These estimated DSDs provide evidence that the radar can retrieve the smaller drop sizes constituting the “drizzle” mode part of the DSD. This estimation technique was applied to 19 h of observations from Hankins, North Carolina. Results support the concept that DSDs can be modeled using GGDs with a limited range of parameters. Further work is needed to validate the described technique for estimating DSDs in more varied precipitation types and to verify the vertical air motion estimates.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul E. Johnston, Paul.E.Johnston@noaa.gov

Abstract

Using NOAA’s S-band High-Power Snow-Level Radar (HPSLR), a technique for estimating the rain drop size distribution (DSD) above the radar is presented. This technique assumes the DSD can be described by a four parameter, generalized gamma distribution (GGD). Using the radar’s measured average Doppler velocity spectrum and a value (assumed, measured, or estimated) of the vertical air motion w, an estimate of the GGD is obtained. Four different methods can be used to obtain w. One method that estimates a mean mass-weighted raindrop diameter Dm from the measured reflectivity Z produces realistic DSDs compared to prior literature examples. These estimated DSDs provide evidence that the radar can retrieve the smaller drop sizes constituting the “drizzle” mode part of the DSD. This estimation technique was applied to 19 h of observations from Hankins, North Carolina. Results support the concept that DSDs can be modeled using GGDs with a limited range of parameters. Further work is needed to validate the described technique for estimating DSDs in more varied precipitation types and to verify the vertical air motion estimates.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul E. Johnston, Paul.E.Johnston@noaa.gov
Save