Vertical Atmospheric Structures Associated with Positive Biases in COSMIC-2 Refractivity Retrievals

Paweł Hordyniec aSatellite Positioning for Atmosphere, Climate and Environment Research Centre, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia

Search for other papers by Paweł Hordyniec in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2404-3422
,
Robert Norman bSERC Limited, Weston Creek, Australian Capital Territory, Australia

Search for other papers by Robert Norman in
Current site
Google Scholar
PubMed
Close
, and
John Le Marshall cBureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by John Le Marshall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Representation of complex vertical structures observed in the troposphere can vary depending on data sources. The radio occultation (RO) technique offers great advantages for sensing the atmosphere down to its lowermost layers using high-resolution measurements collected by satellites on low-Earth orbit (LEO). The structures are generally smoother in vertical when reproduced from atmospheric models. We evaluate the quality of troposphere retrievals from the COSMIC-2 mission and demonstrate that systematic effects in fractional refractivity deviations with respect to European Centre for Medium-Range Weather Forecasts (ECMWF) background fields are spatially correlated with positive refractivity gradients characterized as subrefraction. The magnitude of refractivity biases observed mostly over the equatorial regions can exceed 1% within altitudes of 3–5 km. Respective zonal means reveal seasonal trends linked with the distribution of atmospheric inversion layers and signal-to-noise ratio values in RO data. The positive biases are vertically collocated with significant refractivity gradients in COSMIC-2 retrievals that are not reflected in the corresponding ECMWF profiles. The analysis of gradients based on COSMIC-2 data, further supported by radiosonde observations, suggests that most of subrefractions is identified in the middle troposphere at around 4 km. While the altitudes of maximum refractivity gradients from COSMIC-2 and ECMWF data are in fairly good agreement, the magnitude of ECMWF gradients is significantly smaller and rarely exceeds positive values.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Hordyniec’s current affiliation: Institute of Geodesy and Geoinformatics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.

Corresponding author: Paweł Hordyniec, pawel.hordyniec@upwr.edu.pl

Abstract

Representation of complex vertical structures observed in the troposphere can vary depending on data sources. The radio occultation (RO) technique offers great advantages for sensing the atmosphere down to its lowermost layers using high-resolution measurements collected by satellites on low-Earth orbit (LEO). The structures are generally smoother in vertical when reproduced from atmospheric models. We evaluate the quality of troposphere retrievals from the COSMIC-2 mission and demonstrate that systematic effects in fractional refractivity deviations with respect to European Centre for Medium-Range Weather Forecasts (ECMWF) background fields are spatially correlated with positive refractivity gradients characterized as subrefraction. The magnitude of refractivity biases observed mostly over the equatorial regions can exceed 1% within altitudes of 3–5 km. Respective zonal means reveal seasonal trends linked with the distribution of atmospheric inversion layers and signal-to-noise ratio values in RO data. The positive biases are vertically collocated with significant refractivity gradients in COSMIC-2 retrievals that are not reflected in the corresponding ECMWF profiles. The analysis of gradients based on COSMIC-2 data, further supported by radiosonde observations, suggests that most of subrefractions is identified in the middle troposphere at around 4 km. While the altitudes of maximum refractivity gradients from COSMIC-2 and ECMWF data are in fairly good agreement, the magnitude of ECMWF gradients is significantly smaller and rarely exceeds positive values.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Hordyniec’s current affiliation: Institute of Geodesy and Geoinformatics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.

Corresponding author: Paweł Hordyniec, pawel.hordyniec@upwr.edu.pl
Save
  • Ao, C. O., 2007: Effect of ducting on radio occultation measurements: An assessment based on high-resolution radiosonde soundings. Radio Sci., 42, RS2008, https://doi.org/10.1029/2006RS003485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, C. O., T. Meehan, G. Hajj, A. Mannucci, and G. Beyerle, 2003: Lower troposphere refractivity bias in GPS occultation retrievals. J. Geophys. Res., 108, 4577, https://doi.org/10.1029/2002JD003216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, C. O., D. E. Waliser, S. K. Chan, J.-L. Li, B. Tian, F. Xie, and A. J. Mannucci, 2012: Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. J. Geophys. Res., 117, D16117, https://doi.org/10.1029/2012JD017598.

    • Search Google Scholar
    • Export Citation
  • Babin, S. M., 1995: A case study of subrefractive conditions at Wallops Island, Virginia. J. Appl. Meteor., 34, 10281038, https://doi.org/10.1175/1520-0450(1995)034<1028:ACSOSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beyerle, G., T. Schmidt, J. Wickert, S. Heise, M. Rothacher, G. König-Langlo, and K. Lauritsen, 2006: Observations and simulations of receiver-induced refractivity biases in GPS radio occultation. J. Geophys. Res., 111, D12101, https://doi.org/10.1029/2005JD006673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., A. G. Pendergrass, A. D. Rapp, and K. R. Wodzicki, 2018: Response of the intertropical convergence zone to climate change: Location, width, and strength. Curr. Climate Change Rep., 4, 355370, https://doi.org/10.1007/s40641-018-0110-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-Y., C.-Y. Huang, Y.-H. Kuo, and S. Sokolovskiy, 2011: Observational error estimation of FORMOSAT-3/COSMIC GPS radio occultation data. Mon. Wea. Rev., 139, 853865, https://doi.org/10.1175/2010MWR3260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-Y., C.-Y. Liu, C.-Y. Huang, S.-C. Hsu, H.-W. Li, P.-H. Lin, J.-P. Cheng, and C.-Y. Huang, 2021: An analysis study of FORMOSAT-7/COSMIC-2 radio occultation data in the troposphere. Remote Sens., 13, 717, https://doi.org/10.3390/rs13040717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, S. K., Y. Ming, I. M. Held, and P. J. Phillipps, 2018: The role of the water vapor feedback in the ITCZ response to hemispherically asymmetric forcings. J. Climate, 31, 36593678, https://doi.org/10.1175/JCLI-D-17-0723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., R. Anthes, and L.-L. Tsao, 2014: Radio occultation observations as anchor observations in numerical weather prediction models and associated reduction of bias corrections in microwave and infrared satellite observations. J. Atmos. Oceanic Technol., 31, 2032, https://doi.org/10.1175/JTECH-D-13-00059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 33233343, https://doi.org/10.1256/qj.05.137.

  • Gorbunov, M., K. Lauritsen, A. Rhodin, M. Tomassini, and L. Kornblueh, 2006: Radio holographic filtering, error estimation, and quality control of radio occultation data. J. Geophys. Res., 111, D10105, https://doi.org/10.1029/2005JD006427.

    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., and Coauthors, 2020: Initial assessment of the COSMIC-2/FORMOSAT-7 neutral atmosphere data quality in NESDIS/STAR using in situ and satellite data. Remote Sens., 12, 4099, https://doi.org/10.3390/rs12244099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hocke, K., A. Pavelyev, O. Yakovlev, L. Barthes, and N. Jakowski, 1999: Radio occultation data analysis by the radioholographic method. J. Atmos. Sol.-Terr. Phys., 61, 11691177, https://doi.org/10.1016/S1364-6826(99)00080-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hordyniec, P., 2018: Simulation of liquid water and ice contributions to bending angle profiles in the radio occultation technique. Adv. Space Res., 62, 10751089, https://doi.org/10.1016/j.asr.2018.06.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hordyniec, P., Y. Kuleshov, S. Choy, and R. Norman, 2021: Observation of deep occultation signals in tropical cyclones with COSMIC-2 measurements. IEEE Geosci. Remote Sens. Lett., 19, 1002905, https://doi.org/10.1109/LGRS.2021.3092511.

    • Search Google Scholar
    • Export Citation
  • Liu, H., Y.-H. Kuo, S. Sokolovskiy, X. Zou, Z. Zeng, L.-F. Hsiao, and B. C. Ruston, 2018: A quality control procedure based on bending angle measurement uncertainty for radio occultation data assimilation in the tropical lower troposphere. J. Atmos. Oceanic Technol., 35, 21172131, https://doi.org/10.1175/JTECH-D-17-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieckh, T., B. Scherllin-Pirscher, F. Ladstädter, and U. Foelsche, 2014: Characteristics of tropopause parameters as observed with GPS radio occultation. Atmos. Meas. Tech., 7, 39473958, https://doi.org/10.5194/amt-7-3947-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scherllin-Pirscher, B., G. Kirchengast, A. Steiner, Y.-H. Kuo, and U. Foelsche, 2011: Quantifying uncertainty in climatological fields from GPS radio occultation: An empirical-analytical error model. Atmos. Meas. Tech., 4, 20192034, https://doi.org/10.5194/amt-4-2019-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scherllin-Pirscher, B., A. K. Steiner, G. Kirchengast, M. Schwärz, and S. S. Leroy, 2017: The power of vertical geolocation of atmospheric profiles from GNSS radio occultation. J. Geophys. Res. Atmos., 122, 15951616, https://doi.org/10.1002/2016JD025902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, T., G. Beyerle, S. Heise, J. Wickert, and M. Rothacher, 2006: A climatology of multiple tropopauses derived from GPS radio occultations with CHAMP and SAC-C. Geophys. Res. Lett., 33, L04808, https://doi.org/10.1029/2005GL024600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreiner, W., and Coauthors, 2019: Performance assessment and requirement verification of COSMIC-2 neutral atmospheric radio occultation data. UCAR COSMIC Program Doc., 22 pp., https://www.romsaf.org/romsaf-irowg-2019/en/open/1570200603.b4c2a0b42191514125cfdaad83aac7be.pdf/Schreiner__UCAR-Schreiner-C2-CALVAL-09192019-final.pdf.

    • Search Google Scholar
    • Export Citation
  • Schreiner, W., and Coauthors, 2020: COSMIC-2 radio occultation constellation: First results. Geophys. Res. Lett., 47, e2019GL086841, https://doi.org/10.1029/2019GL086841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E. K., and S. Weintraub, 1953: The constants in the equation for atmospheric refractive index at radio frequencies. Proc. IRE, 41, 10351037, https://doi.org/10.1109/JRPROC.1953.274297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S. V., 2001: Modeling and inverting radio occultation signals in the moist troposphere. Radio Sci., 36, 441458, https://doi.org/10.1029/1999RS002273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S. V., 2003: Effect of superrefraction on inversions of radio occultation signals in the lower troposphere. Radio Sci., 38, 1058, https://doi.org/10.1029/2002RS002728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S. V., 2004: Open loop tracking and inverting GPS radio occultation signals: Simulation study. Occultations for Probing Atmosphere and Climate, Springer, 3951, https://doi.org/10.1007/978-3-662-09041-1_4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S. V., C. Rocken, W. Schreiner, and D. Hunt, 2010: On the uncertainty of radio occultation inversions in the lower troposphere. J. Geophys. Res., 115, D22111, https://doi.org/10.1029/2010JD014058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S. V., W. Schreiner, J. Weiss, Z. Zeng, D. Hunt, and J. Braun, 2019: Initial assessment of COSMIC-2 data in the lower troposphere (LT). Joint Sixth ROM SAF Data User Workshop and Seventh IROWG Workshop, Elsinore, Denmark, ROM SAF–IROWG, https://www.romsaf.org/romsaf-irowg-2019/en/open/1570202428.cf195c6aa62789cfb81f06d529ecdf0f.pdf/Sokolovskiy__IROWG-UCAR-C2-LT_Final.pdf.

    • Search Google Scholar
    • Export Citation
  • Steiner, A., and Coauthors, 2013: Quantification of structural uncertainty in climate data records from GPS radio occultation. Atmos. Chem. Phys., 13, 14691484, https://doi.org/10.5194/acp-13-1469-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, A., and Coauthors, 2020a: Observed temperature changes in the troposphere and stratosphere from 1979 to 2018. J. Climate, 33, 81658194, https://doi.org/10.1175/JCLI-D-19-0998.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, A., and Coauthors, 2020b: Consistency and structural uncertainty of multi-mission GPS radio occultation records. Atmos. Meas. Tech., 13, 25472575, https://doi.org/10.5194/amt-13-2547-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, H., H. Wang, X. Huang, and S. Wu, 2012: A case study of subrefraction and its influence on electromagnetic waves propagation. 2012 Sixth Asia-Pacific Conf. on Environmental Electromagnetics, Shanghai, China, IEEE, 5862, https://doi.org/10.1109/CEEM.2012.6410565.

    • Search Google Scholar
    • Export Citation
  • Vergados, P., C. O. Ao, A. J. Mannucci, and E. R. Kursinski, 2021: Quantifying the tropical upper tropospheric warming amplification using radio occultation measurements. Earth Space Sci., 8, e2020EA001597, https://doi.org/10.1029/2020EA001597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Engeln, A., G. Nedoluha, and J. Teixeira, 2003: An analysis of the frequency and distribution of ducting events in simulated radio occultation measurements based on ECMWF fields. J. Geophys. Res., 108, 4669, https://doi.org/10.1029/2002JD003170.

    • Search Google Scholar
    • Export Citation
  • Wang, K.-N., M. Torre Juárez, C. O. Ao, and F. Xie, 2017: Correcting negatively biased refractivity below ducts in GNSS radio occultation: An optimal estimation approach towards improving planetary boundary layer (PBL) characterization. Atmos. Meas. Tech., 10, 47614776, https://doi.org/10.5194/amt-10-4761-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, F., S. Syndergaard, E. R. Kursinski, and B. M. Herman, 2006: An approach for retrieving marine boundary layer refractivity from GPS occultation data in the presence of superrefraction. J. Atmos. Oceanic Technol., 23, 16291644, https://doi.org/10.1175/JTECH1996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, F., D. Wu, C. Ao, E. Kursinski, A. Mannucci, and S. Syndergaard, 2010: Super-refraction effects on GPS radio occultation refractivity in marine boundary layers. Geophys. Res. Lett., 37, L11805, https://doi.org/10.1029/2010GL043299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, F., D. Wu, C. Ao, A. Mannucci, and E. Kursinski, 2012: Advances and limitations of atmospheric boundary layer observations with GPS occultation over southeast Pacific Ocean. Atmos. Chem. Phys., 12, 903918, https://doi.org/10.5194/acp-12-903-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and X. Zou, 2017: Dependence of positive refractivity bias of GPS RO cloudy profiles on cloud fraction along GPS RO limb tracks. GPS Solutions, 21, 499509, https://doi.org/10.1007/s10291-016-0541-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., S. Sokolovskiy, W. S. Schreiner, and D. Hunt, 2019: Representation of vertical atmospheric structures by radio occultation observations in the upper troposphere and lower stratosphere: Comparison to high-resolution radiosonde profiles. J. Atmos. Oceanic Technol., 36, 655670, https://doi.org/10.1175/JTECH-D-18-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, X., S. Yang, and P. Ray, 2012: Impacts of ice clouds on GPS radio occultation measurements. J. Atmos. Sci., 69, 36703682, https://doi.org/10.1175/JAS-D-11-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 170 0 0
Full Text Views 242 152 1
PDF Downloads 214 120 2