Wildfire Smoke Observations in the Western United States from the Airborne Wyoming Cloud Lidar during the BB-FLUX Project. Part I: Data Description and Methodology

Min Deng aDepartment of Atmospheric Science, University of Wyoming, Laramie, Wyoming
bLaboratory of Atmosphere and Space Physics, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Min Deng in
Current site
Google Scholar
PubMed
Close
,
Zhien Wang bLaboratory of Atmosphere and Space Physics, University of Colorado Boulder, Boulder, Colorado
cDepartment of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Zhien Wang in
Current site
Google Scholar
PubMed
Close
,
Rainer Volkamer cDepartment of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado
dDepartment of Chemistry, University of Colorado Boulder, Boulder, Colorado
eCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Rainer Volkamer in
Current site
Google Scholar
PubMed
Close
,
Jefferson R. Snider aDepartment of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Jefferson R. Snider in
Current site
Google Scholar
PubMed
Close
,
Larry Oolman aDepartment of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Larry Oolman in
Current site
Google Scholar
PubMed
Close
,
David M. Plummer aDepartment of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by David M. Plummer in
Current site
Google Scholar
PubMed
Close
,
Natalie Kille cDepartment of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado
eCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Natalie Kille in
Current site
Google Scholar
PubMed
Close
,
Kyle J. Zarzana dDepartment of Chemistry, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Kyle J. Zarzana in
Current site
Google Scholar
PubMed
Close
,
Christopher F. Lee dDepartment of Chemistry, University of Colorado Boulder, Boulder, Colorado
eCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Christopher F. Lee in
Current site
Google Scholar
PubMed
Close
,
Teresa Campos fNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Teresa Campos in
Current site
Google Scholar
PubMed
Close
,
Nicholas Ryan Mahon aDepartment of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Nicholas Ryan Mahon in
Current site
Google Scholar
PubMed
Close
,
Brent Glover aDepartment of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Brent Glover in
Current site
Google Scholar
PubMed
Close
,
Matthew D. Burkhart aDepartment of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Matthew D. Burkhart in
Current site
Google Scholar
PubMed
Close
, and
Austin Morgan aDepartment of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Austin Morgan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

During the summer of 2018, the upward-pointing Wyoming Cloud Lidar (WCL) was deployed on board the University of Wyoming King Air (UWKA) research aircraft for the Biomass Burning Flux Measurements of Trace Gases and Aerosols (BB-FLUX) field campaign. This paper describes the generation of calibrated attenuated backscatter coefficients and aerosol extinction coefficients from the WCL measurements. The retrieved aerosol extinction coefficients at the flight level strongly correlate (correlation coefficient, rr > 0.8) with in situ aerosol concentration and carbon monoxide (CO) concentration, providing a first-order estimate for converting WCL extinction coefficients into vertically resolved CO and aerosol concentration within wildfire smoke plumes. The integrated CO column concentrations from the WCL data in nonextinguished profiles also correlate (rr = 0.7) with column measurements by the University of Colorado Airborne Solar Occultation Flux instrument, indicating the validity of WCL-derived extinction coefficients. During BB-FLUX, the UWKA sampled smoke plumes from more than 20 wildfires during 35 flights over the western United States. Seventy percent of flight time was spent below 3 km above ground level (AGL) altitude, although the UWKA ascended up to 6 km AGL to sample the top of some deep smoke plumes. The upward-pointing WCL observed a nearly equal amount of thin and dense smoke below 2 km and above 5 km due to the flight purpose of targeted fresh fire smoke. Between 2 and 5 km, where most of the wildfire smoke resided, the WCL observed slightly more thin smoke than dense smoke due to smoke spreading. Extinction coefficients in dense smoke were 2–10 times stronger, and dense smoke tended to have larger depolarization ratio, associated with irregular aerosol particles.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Min Deng, mdeng2@uwyo.edu

Abstract

During the summer of 2018, the upward-pointing Wyoming Cloud Lidar (WCL) was deployed on board the University of Wyoming King Air (UWKA) research aircraft for the Biomass Burning Flux Measurements of Trace Gases and Aerosols (BB-FLUX) field campaign. This paper describes the generation of calibrated attenuated backscatter coefficients and aerosol extinction coefficients from the WCL measurements. The retrieved aerosol extinction coefficients at the flight level strongly correlate (correlation coefficient, rr > 0.8) with in situ aerosol concentration and carbon monoxide (CO) concentration, providing a first-order estimate for converting WCL extinction coefficients into vertically resolved CO and aerosol concentration within wildfire smoke plumes. The integrated CO column concentrations from the WCL data in nonextinguished profiles also correlate (rr = 0.7) with column measurements by the University of Colorado Airborne Solar Occultation Flux instrument, indicating the validity of WCL-derived extinction coefficients. During BB-FLUX, the UWKA sampled smoke plumes from more than 20 wildfires during 35 flights over the western United States. Seventy percent of flight time was spent below 3 km above ground level (AGL) altitude, although the UWKA ascended up to 6 km AGL to sample the top of some deep smoke plumes. The upward-pointing WCL observed a nearly equal amount of thin and dense smoke below 2 km and above 5 km due to the flight purpose of targeted fresh fire smoke. Between 2 and 5 km, where most of the wildfire smoke resided, the WCL observed slightly more thin smoke than dense smoke due to smoke spreading. Extinction coefficients in dense smoke were 2–10 times stronger, and dense smoke tended to have larger depolarization ratio, associated with irregular aerosol particles.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Min Deng, mdeng2@uwyo.edu
Save
  • Ackermann, J., 1998: The extinction-to-backscatter ratio of tropospheric aerosol: A numerical study. J. Atmos. Oceanic Technol., 15, 10431050, https://doi.org/10.1175/1520-0426(1998)015<1043:TETBRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adam, M., D. Nicolae, I. S. Stachlewska, A. Papayannis, and D. Balis, 2020: Biomass burning events measured by lidars in EARLINET—Part 1: Data analysis methodology. Atmos. Chem. Phys., 20, 13 90513 927, https://doi.org/10.5194/acp-20-13905-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amiridis, V., and Coauthors, 2010: Smoke injection heights from agricultural burning in eastern Europe as seen by CALIPSO. Atmos. Chem. Phys., 10, 11 56711 576, https://doi.org/10.5194/acp-10-11567-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, T. L., S. J. Masonis, D. S. Covert, and R. J. Charlson, 2000: In situ measurements of the aerosol extinction-to-backscatter ratio at a polluted continental site. J. Geophys. Res., 105, 26 90726 915, https://doi.org/10.1029/2000JD900400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansmann, A., F. Wagner, D. Althausen, D. Muller, A. Herber, and U. Wandinger, 2001: European pollution outbreaks during ACE 2: Lofted aerosol plumes observed with Raman lidar at the Portuguese coast. J. Geophys. Res., 106, 20 72520 733, https://doi.org/10.1029/2000JD000091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansmann, A., and Coauthors, 2021: Tropospheric and stratospheric wildfire smoke profiling with lidar: Mass, surface area, CCN, and INP retrieval. Atmos. Chem. Phys., 21, 97799807, https://doi.org/10.5194/acp-21-9779-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baars, H., P. Seifert, R. Engelmann, and U. Wandinger, 2017: Target categorization of aerosol and clouds by continuous multiwavelength-polarization lidar measurements. Atmos. Meas. Tech., 10, 31753201, https://doi.org/10.5194/amt-10-3175-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baars, H., and Coauthors, 2021: Californian wildfire smoke over Europe: A first example of the aerosol observing capabilities of Aeolus compared to ground-based lidar. Geophys. Res. Lett., 48, e2020GL092194, https://doi.org/10.1029/2020GL092194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baidar, S., N. Kille, I. Ortega, R. Sinreich, D. Thomson, J. Hannigan, and R. Volkamer, 2016: Development of a digital mobile solar tracker. Atmos. Meas. Tech., 9, 963972, https://doi.org/10.5194/amt-9-963-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bela, M. M., and Coauthors, 2022: Quantifying carbon monoxide emissions on the scale of large wildfires. Geophys. Res. Lett., 49, e2021GL095831, https://doi.org/10.1029/2021GL095831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, Y., J. R. Snider, and P. Wechsler, 2013: Calibration of the passive cavity aerosol spectrometer probe for airborne determination of the size distribution. Atmos. Meas. Tech., 6, 23492358, https://doi.org/10.5194/amt-6-2349-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattrall, C., J. Reagan, K. Thome, and O. Dubovik, 2005: Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected aerosol robotic network locations. J. Geophys. Res., 110, D10S11, https://doi.org/10.1029/2004JD005124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damoah, R., and Coauthors, 2004: Around the world in 17 days—Hemispheric-scale transport of forest fire smoke from Russia in May 2003. Atmos. Chem. Phys., 4, 13111321, https://doi.org/10.5194/acp-4-1311-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, S., and Coauthors, 2017: Biomass burning aerosol transport and vertical distribution over the South African-Atlantic region. J. Geophys. Res. Atmos., 122, 63916415, https://doi.org/10.1002/2016JD026421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, M., R. Volkamer, Z. Wang, J. Snider, N. Kille, and L. Romero-Alvarez, 2022: Wildfire smoke observations in the western United States from the airborne Wyoming Cloud Lidar during the BB-FLUX project. Part II: Vertical structure and plume injection height. J. Atmos. Oceanic Technol., 39, 559572, https://doi.org/10.1175/10.1175/JTECH-D-21-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diner, D. J., and Coauthors, 1998: Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens., 36, 10721087, https://doi.org/10.1109/36.700992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ditas, J., and Coauthors, 2018: Strong impact of wildfires on the abundance and aging of black carbon in the lowermost stratosphere. Proc. Natl. Acad. Sci. USA, 115, E11595E11603, https://doi.org/10.1073/pnas.1806868115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duck, T. J., and Coauthors, 2007: Transport of forest fire emissions from Alaska and the Yukon Territory to Nova Scotia during summer 2004. J. Geophys. Res., 112, D10S44, https://doi.org/10.1029/2006JD007716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernald, F. G., 1984: Analysis of atmospheric lidar observations: Some comments. Appl. Opt., 23, 652653, https://doi.org/10.1364/AO.23.000652.

  • Garofalo, L. A., M. A. Pothier, E. J. Levin, T. Campos, S. Kreidenweis, and D. K. Farmer, 2019: Emission and evolution of submicron organic aerosol in smoke from wildfires in the western United States. ACS Earth Space Chem., 3, 12371247, https://doi.org/10.1021/acsearthspacechem.9b00125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerbig, C., S. Schmitgen, D. Kley, A. Volz-Thomas, K. Dewey, and D. Haaks, 1999: An improved fast-response vacuum-UV resonance fluorescence CO instrument. J. Geophys. Res., 104, 16991704, https://doi.org/10.1029/1998JD100031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez-Alonso, L., M. Val Martin, and R. A. Kahn, 2019: Biomass-burning smoke heights over the Amazon observed from space. Atmos. Chem. Phys., 19, 16851702, https://doi.org/10.5194/acp-19-1685-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, D., and Coauthors, 2020: The 2018 fire season in North America as seen by TROPOMI: Aerosol layer height intercomparisons and evaluation of model-derived plume heights. Atmos. Meas. Tech., 13, 14271445, https://doi.org/10.5194/amt-13-1427-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarig, M., A. Ansmann, H. Baars, C. Jimenez, I. Veselovskii, R. Engelmann, and D. Althausen, 2018: Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke. Atmos. Chem. Phys., 18, 11 84711 861, https://doi.org/10.5194/acp-18-11847-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsch, E., and I. Koren, 2021: Record-breaking aerosol levels explained by smoke injection into the stratosphere. Science, 371, 12691274, https://doi.org/10.1126/science.abe1415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kille, N., and Coauthors, 2017: The CU mobile Solar Occultation Flux instrument: Structure functions and emission rates of NH3, NO2 and C2H6. Atmos. Meas. Tech., 10, 373392, https://doi.org/10.5194/amt-10-373-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kille, N., and Coauthors, 2020: Quantifying the relationship between CO mass fluxes and satellite fire radiative power from wildfires. 2020 Fall Meeting, Online, Amer. Geophys. Union, Abstract A176-0018.

    • Search Google Scholar
    • Export Citation
  • Kim, M.-H., and Coauthors, 2018: The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech., 11, 61076135, https://doi.org/10.5194/amt-11-6107-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knopf, D. A., P. A. Alpert, and B. Wang, 2018: The role of organic aerosol in atmospheric ice nucleation: A review. ACS Earth Space Chem., 2, 168202, https://doi.org/10.1021/acsearthspacechem.7b00120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisseeva, N., and R. Stull, 2021: Wildfire smoke-plume rise: A simple energy balance parameterization. Atmos. Chem. Phys., 21, 14071425, https://doi.org/10.5194/acp-21-1407-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, D., I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, and A. Stohl, 2005: Raman lidar observations of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization. J. Geophys. Res., 110, D17201, https://doi.org/10.1029/2004JD005756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, D., A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, 2007: Aerosol-type-dependent lidar ratios observed with Raman lidar. J. Geophys. Res., 112, D16202, https://doi.org/10.1029/2006JD008292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nisantzi, A., R. E. Mamouri, A. Ansmann, and D. Hadjimitsis, 2014: Injection of mineral dust into the free troposphere during fire events observed with polarization lidar at Limassol, Cyprus. Atmos. Chem. Phys., 14, 12 15512 165, https://doi.org/10.5194/acpd-14-17299-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohneiser, K., and Coauthors, 2020: Smoke of extreme Australian bushfires observed in the stratosphere over Punta Arenas, Chile, in January 2020: Optical thickness, lidar ratios, and depolarization ratios at 355 and 532 nm. Atmos. Chem. Phys., 20, 80038015, https://doi.org/10.5194/acp-20-8003-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paugam, R., M. Wooster, S. Freitas, and M. Val Martin, 2016: A review of approaches to estimate wildfire plume injection height within large-scale atmospheric chemical transport models. Atmos. Chem. Phys., 16, 907925, https://doi.org/10.5194/acp-16-907-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, D., E. Hyer, and J. Wang, 2014: Quantifying the potential for high-altitude smoke injection in the North American boreal forest using the standard MODIS fire products and subpixel-based methods. J. Geophys. Res. Atmos., 119, 34013419, https://doi.org/10.1002/2013JD021067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, J. S., and Coauthors, 2009: Global monitoring and forecasting of biomass-burning smoke: description of and lessons from the Fire Locating and Modeling of Burning Emissions (FLAMBE) program. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2, 144162, https://doi.org/10.1109/JSTARS.2009.2027443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sessions, W. R., H. E. Fuelberg, R. A. Kahn, and D. M. Winker, 2011: An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS. Atmos. Chem. Phys., 11, 57195744, https://doi.org/10.5194/acp-11-5719-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teakles, A. D., and Coauthors, 2017: Impacts of the July 2012 Siberian fire plume on air quality in the Pacific Northwest. Atmos. Chem. Phys., 17, 25932611, https://doi.org/10.5194/acp-17-2593-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trentmann, J., M. O. Andreae, H.-F. Graf, P. V. Hobbs, R. D. Ottmar, and T. Trautmann, 2002: Simulation of a biomass-burning plume: Comparison of model results with observations. J. Geophys. Res., 107, 4013, https://doi.org/10.1029/2001JD000410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: Atmospheric Aerosols. Elsevier, 302 pp.

  • Val Martin, M., J. A. Logan, R. A. Kahn, F.-Y. Leung, D. L. Nelson, and D. J. Diner, 2010: Smoke injection heights from fires in North America: Analysis of 5 years of satellite observations. Atmos. Chem. Phys., 10, 14911510, https://doi.org/10.5194/acp-10-1491-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voss, K. J., E. J. Welton, P. K. Quinn, J. Johnson, A. M. Thompson, and H. R. Gordon, 2001: Lidar measurements during Aerosols99. J. Geophys. Res., 106, 20 82120 831, https://doi.org/10.1029/2001JD900217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, R., M. Jähn, and K. Schepanski, 2018: Wildfires as a source of airborne mineral dust—Revisiting a conceptual model using large-eddy simulation (LES). Atmos. Chem. Phys., 18, 11 86311 884, https://doi.org/10.5194/acp-18-11863-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wandinger, U., and Coauthors, 2002: Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements. J. Geophys. Res., 107, 8125, https://doi.org/10.1029/2000JD000202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and K. Sassen, 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. J. Appl. Meteor., 40, 16651682, https://doi.org/10.1175/1520-0450(2001)040<1665:CTAMPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., P. Wechsler, W. Kuestner, J. French, A. Rodi, B. Glover, M. Burkhart, and D. Lukens, 2009: Wyoming Cloud Lidar: Instrument description and applications. Opt. Express, 17, 13 57613 587, https://doi.org/10.1364/OE.17.013576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willeke, K., and B. Y. H. Liu, 1976: Single particle optical counter: Principle and applications. Fine Particles: Aerosol Generation, Measurement, Sampling, and Analysis, B. Y. H. Liu, Ed., Academic Press, 698729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and Coauthors, 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111230, https://doi.org/10.1175/2010BAMS3009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers, 2013: The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmos. Chem. Phys., 13, 33453361, https://doi.org/10.5194/acp-13-3345-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H., M. Chin, D. M. Winker, A. H. Omar, Z. Liu, C. Kittaka, and T. Diehl, 2010: Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations. J. Geophys. Res. Atmos., 115, D00H30, https://doi.org/10.1029/2009JD013364.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 706 0 0
Full Text Views 674 288 17
PDF Downloads 402 179 10