Combined Space- and Ground-Based GNSS Monitoring of Two Severe Hailstorm Cases in Bulgaria

Elżbieta Lasota aInstitute of Geodesy and Geoinformatics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland

Search for other papers by Elżbieta Lasota in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6276-2188
,
Martin Slavchev bDepartment of Meteorology and Geophysics, Physics Faculty, Sofia University, Sofia, Bulgaria

Search for other papers by Martin Slavchev in
Current site
Google Scholar
PubMed
Close
,
Guergana Guerova bDepartment of Meteorology and Geophysics, Physics Faculty, Sofia University, Sofia, Bulgaria

Search for other papers by Guergana Guerova in
Current site
Google Scholar
PubMed
Close
,
Witold Rohm aInstitute of Geodesy and Geoinformatics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland

Search for other papers by Witold Rohm in
Current site
Google Scholar
PubMed
Close
, and
Jan Kapłon aInstitute of Geodesy and Geoinformatics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland

Search for other papers by Jan Kapłon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Monitoring atmospheric conditions that lead to severe weather events is critical to their timely and accurate prediction and can help prevent of large economic losses. Bulgaria, located in southeastern Europe, has the highest mean number of thunderstorms and hailstorms. These events generally occur between April and September with a peak in July. In this study, both radio occultation (RO) and ground-based observations from the Global Navigation Satellite Systems (GNSS) were used to study two severe hailstorms that occurred in 2014 and 2019. In both storms, a cold upper-air pool was detected in addition to a large specific humidity anomaly between 2 and 6 km. In the hailstorm that occurred in July 2014, there was an RO temperature anomaly between 10 and 14 km as well as a positive specific humidity anomaly between 4 and 6 km. The integrated vapor transport (IVT) reanalysis from ERA5, indicated that the high specific humidity over the Mediterranean could be tracked to an atmospheric river over the North Atlantic, which was connected to a tropical cyclone. In the hailstorm that occurred in May 2019, elevated IVT values were observed before the storm. During this storm, a negative temperature anomaly peak was observed in the RO profile at 11.3 km as well as a positive specific humidity anomaly between 2 and 4.5 km. The WRF Model and the ERA5 dataset could reproduce the temperature profiles for both storms relatively well; however, they tended to underestimate specific humidity. The RO profiles were complemented by ground-based GNSS tropospheric delays with high temporal resolution. The evaluation of the WRF with ground-based GNSS tropospheric products revealed a time delay between the modeled and observed developments of both hailstorms.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elżbieta Lasota, elzbieta.lasota@upwr.edu.pl

Abstract

Monitoring atmospheric conditions that lead to severe weather events is critical to their timely and accurate prediction and can help prevent of large economic losses. Bulgaria, located in southeastern Europe, has the highest mean number of thunderstorms and hailstorms. These events generally occur between April and September with a peak in July. In this study, both radio occultation (RO) and ground-based observations from the Global Navigation Satellite Systems (GNSS) were used to study two severe hailstorms that occurred in 2014 and 2019. In both storms, a cold upper-air pool was detected in addition to a large specific humidity anomaly between 2 and 6 km. In the hailstorm that occurred in July 2014, there was an RO temperature anomaly between 10 and 14 km as well as a positive specific humidity anomaly between 4 and 6 km. The integrated vapor transport (IVT) reanalysis from ERA5, indicated that the high specific humidity over the Mediterranean could be tracked to an atmospheric river over the North Atlantic, which was connected to a tropical cyclone. In the hailstorm that occurred in May 2019, elevated IVT values were observed before the storm. During this storm, a negative temperature anomaly peak was observed in the RO profile at 11.3 km as well as a positive specific humidity anomaly between 2 and 4.5 km. The WRF Model and the ERA5 dataset could reproduce the temperature profiles for both storms relatively well; however, they tended to underestimate specific humidity. The RO profiles were complemented by ground-based GNSS tropospheric delays with high temporal resolution. The evaluation of the WRF with ground-based GNSS tropospheric products revealed a time delay between the modeled and observed developments of both hailstorms.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elżbieta Lasota, elzbieta.lasota@upwr.edu.pl
Save
  • Adams, D. K., S. I. Gutman, K. L. Holub, and D. S. Pereira, 2013: GNSS observations of deep convective time scales in the Amazon. Geophys. Res. Lett., 40, 28182823, https://doi.org/10.1002/grl.50573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, D. K., and Coauthors, 2015: The Amazon Dense GNSS Meteorological Network: A new approach for examining water vapor and deep convection interactions in the tropics. Bull. Amer. Meteor. Soc., 96, 21512165, https://doi.org/10.1175/BAMS-D-13-00171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, D. K., H. M. Barbosa, and K. P. Gaitán De Los Ríos, 2017: A spatiotemporal water vapor–deep convection correlation metric derived from the Amazon Dense GNSS Meteorological Network. Mon. Wea. Rev., 145, 279288, https://doi.org/10.1175/MWR-D-16-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angerer, B., F. Ladstädter, B. Scherllin-Pirscher, M. Schwärz, A. K. Steiner, U. Foelsche, and G. Kirchengast, 2017: Quality aspects of the Wegener Center multi-satellite GPS radio occultation record OPSv5.6. Atmos. Meas. Tech., 10, 48454863, https://doi.org/10.5194/amt-10-4845-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barindelli, S., E. Realini, G. Venuti, A. Fermi, and A. Gatti, 2018: Detection of water vapor time variations associated with heavy rain in northern Italy by geodetic and low-cost GNSS receivers. Earth Planets Space, 70, 28, https://doi.org/10.1186/s40623-018-0795-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benevides, P., J. Catalao, and P. M. A. Miranda, 2015: On the inclusion of GPS precipitable water vapour in the now casting of rainfall. Nat. Hazards Earth Syst. Sci., 15, 26052616, https://doi.org/10.5194/nhess-15-2605-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benevides, P., J. Catalao, and G. Nico, 2019: Neural network approach to forecast hourly intense rainfall using GNSS precipitable water vapor and meteorological sensors. Remote Sens., 11, 966, https://doi.org/10.3390/rs11080966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, 1992: GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res., 97, 15 78715 801, https://doi.org/10.1029/92JD01517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biondi, R., W. J. Randel, S.-P. Ho, T. Neubert, and S. Syndergaard, 2012: Thermal structure of intense convective clouds derived from GPS radio occultations. Atmos. Chem. Phys., 12, 53095318, https://doi.org/10.5194/acp-12-5309-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biondi, R., S.-P. Ho, W. Randel, S. Syndergaard, and T. Neubert, 2013: Tropical cyclone cloud-top height and vertical temperature structure detection using GPS radio occultation measurements. J. Geophys. Res. Atmos., 118, 52475259, https://doi.org/10.1002/jgrd.50448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bocheva, L., T. Dimitrova, R. Penchev, I. Gospodinov, and P. Simeonov, 2018: Severe convective supercell outbreak over western Bulgaria on July 8, 2014. Idojaras, 122, 177202, https://doi.org/10.28974/idojaras.2018.2.5.

    • Search Google Scholar
    • Export Citation
  • Boehm, J., B. Werl, and H. Schuh, 2006a: Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J. Geophys. Res., 111, B02406, https://doi.org/10.1029/2005JB003629.

    • Search Google Scholar
    • Export Citation
  • Boehm, J., A. Niell, P. Tregoning, and H. Schuh, 2006b: Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett., 33, L07304, https://doi.org/10.1029/2005GL025546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonafoni, S., R. Biondi, H. Brenot, and R. Anthes, 2019: Radio occultation and ground-based GNSS products for observing, understanding and predicting extreme events: A review. Atmos. Res., 230, 104624, https://doi.org/10.1016/j.atmosres.2019.104624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Brenot, H., and Coauthors, 2013: Preliminary signs of the initiation of deep convection by GNSS. Atmos. Chem. Phys., 13, 54255449, https://doi.org/10.5194/acp-13-5425-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calori, A., J. R. Santos, M. Blanco, H. Pessano, P. Llamedo, P. Alexander, and A. de la Torre, 2016: Ground-based GNSS network and integrated water vapor mapping during the development of severe storms at the Cuyo region (Argentina). Atmos. Res., 176–177, 267275, https://doi.org/10.1016/j.atmosres.2016.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268, https://doi.org/10.1029/95JD02165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and T. A. Herring, 1997: Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J. Geophys. Res., 102, 20 48920 502, https://doi.org/10.1029/97JB01739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., and W.-Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80, 99118, https://doi.org/10.2151/jmsj.80.99.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Vol. 3, 85 pp.

    • Search Google Scholar
    • Export Citation
  • Dach, R., S. Lutz, P. Walser, and P. Fridez, 2015: Bernese GNSS software version 5.2. University of Bern.

  • Davis, J. L., T. A. Herring, I. I. Shapiro, A. E. E. Rogers, and G. Elgered, 1985: Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci., 20, 15931607, https://doi.org/10.1029/RS020i006p01593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, Z., and Coauthors, 2011: Validation of tropospheric slant path delays derived from single and dual frequency GPS receivers. Radio Sci., 46, RS6007, https://doi.org/10.1029/2011RS004687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douša, J., and Coauthors, 2016: Benchmark campaign and case study episode in central Europe for development and assessment of advanced GNSS tropospheric models and products. Atmos. Meas. Tech., 9, 29893008, https://doi.org/10.5194/amt-9-2989-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EODC, 2019: Wegener Center GNSS radio occultation record. Accessed 25 November 2020, https://eodc.eu/data/wegener-center-gnss-radio-occultation-record/.

    • Search Google Scholar
    • Export Citation
  • EOPAC Team, 2020: GNSS radio occultation record (OPS 5.6 2001–2019). University of Graz, accessed 25 November 2020, https://doi.org/10.25364/WEGC/OPS5.6:2020.1.

    • Search Google Scholar
    • Export Citation
  • Feng, P., F. Li, J. Yan, F. Zhang, and J.-P. Barriot, 2020: Assessment of the accuracy of the Saastamoinen model and VMF1/VMF3 mapping functions with respect to ray-tracing from radiosonde data in the framework of GNSS meteorology. Remote Sens., 12, 3337, https://doi.org/10.3390/rs12203337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foelsche, U., G. Kirchengast, A. K. Steiner, L. Kornblueh, E. Manzini, and L. Bengtsson, 2008: An observing system simulation experiment for climate monitoring with GNSS radio occultation data: Setup and test bed study. J. Geophys. Res., 113, D11108, https://doi.org/10.1029/2007JD009231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gobiet, A., G. Kirchengast, G. Manney, M. Borsche, C. Retscher, and G. Stiller, 2007: Retrieval of temperature profiles from CHAMP for climate monitoring: Intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses. Atmos. Chem. Phys., 7, 35193536, https://doi.org/10.5194/acp-7-3519-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graffigna, V., M. Hernández-Pajares, M. Gende, F. Azpilicueta, and P. Antico, 2019: Interpretation of the tropospheric gradients estimated with GPS during Hurricane Harvey. Earth Space Sci., 6, 13481365, https://doi.org/10.1029/2018EA000527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guerova, G., T. Dimitrova, and S. Georgiev, 2019: Thunderstorm classification functions based on instability indices and GNSS IWV for the Sofia Plain. Remote Sens., 11, 2988, https://doi.org/10.3390/rs11242988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guerova, G., T. Dimitrova, K. Vassileva, M. Slavchev, K. Stoev, and S. Georgiev, 2020: Balkan-Med real time severe weather service: Progress and prospects in Bulgaria. Adv. Space Res., 66, 28442853, https://doi.org/10.1016/j.asr.2020.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, S.-Y., Y.-H. Kuo, Y.-R. Guo, C. Rocken, and T. Van Hove, 2002: Comparison of GPS slant wet delay measurements with model simulations during the passage of a squall line. Geophys. Res. Lett., 29, 2113, https://doi.org/10.1029/2002GL015891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hobiger, T., R. Ichikawa, Y. Koyama, and T. Kondo, 2008: Fast and accurate ray-tracing algorithms for real-time space geodetic applications using numerical weather models. J. Geophys. Res., 113, D20302, https://doi.org/10.1029/2008JD010503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofmeister, A., 2016: Determination of path delays in the atmosphere for geodetic VLBI by means of raytracing. Ph.D. thesis, Dept. of Geodesy and Geoinformation, Technische Universität Wien, 309 pp.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hordyniec, P., J. Kapłon, W. Rohm, and M. Kryza, 2018: Residuals of tropospheric delays from GNSS data and ray-tracing as a potential indicator of rain and clouds. Remote Sens., 10, 1917, https://doi.org/10.3390/rs10121917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C.-Y., S.-Y. Chen, S. P. Rao Anisetty, S.-C. Yang, and L.-F. Hsiao, 2016: An impact study of GPS radio occultation observations on frontal rainfall prediction with a local bending angle operator. Wea. Forecasting, 31, 129150, https://doi.org/10.1175/WAF-D-15-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, H. Y., and T. Inoue, 2007: Characteristics of the water-vapor field over the Kanto district associated with summer thunderstorm activities. SOLA, 3, 101104, https://doi.org/10.2151/sola.2007-026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwabuchi, T., I. Naito, and N. Mannoji, 2000: A comparison of global positioning system retrieved precipitable water vapor with the numerical weather prediction analysis data over the Japanese Islands. J. Geophys. Res., 105, 45734585, https://doi.org/10.1029/1999JD901007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kačmařík, M., and Coauthors, 2017: Inter-technique validation of tropospheric slant total delays. Atmos. Meas. Tech., 10, 21832208, https://doi.org/10.5194/amt-10-2183-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kačmařík, M., J. Douša, F. Zus, P. Václavovic, K. Balidakis, G. Dick, and J. Wickert, 2019: Sensitivity of GNSS tropospheric gradients to processing options. Ann. Geophys., 37, 429446, https://doi.org/10.5194/angeo-37-429-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kursinski, E., G. Hajj, J. Schofield, R. Linfield, and K. R. Hardy, 1997: Observing Earth’s atmosphere with radio occultation measurements using the global positioning system. J. Geophys. Res., 102, 23 42923 465, https://doi.org/10.1029/97JD01569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lasota, E., W. Rohm, C.-Y. Liu, and P. Hordyniec, 2018: Cloud detection from radio occultation measurements in tropical cyclones. Atmosphere, 9, 418, https://doi.org/10.3390/atmos9110418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lasota, E., W. Rohm, G. Guerova, and C.-Y. Liu, 2019: A comparison between ray-traced GFS/WRF/ERA and GNSS slant path delays in tropical cyclone Meranti. IEEE Trans. Geosci. Remote Sens., 58, 421435, https://doi.org/10.1109/TGRS.2019.2936785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., and J. Deng, 2013: Atmospheric water monitoring by using ground-based GPS during heavy rains produced by TPV and SWV. Adv. Meteor., 2013, 793957, https://doi.org/10.1155/2013/793957.

    • Search Google Scholar
    • Export Citation
  • Li, X., F. Zus, C. Lu, G. Dick, T. Ning, M. Ge, J. Wickert, and H. Schuh, 2015: Retrieving of atmospheric parameters from multi-GNSS in real time: Validation with water vapor radiometer and numerical weather model. J. Geophys. Res. Atmos., 120, 71897204, https://doi.org/10.1002/2015JD023454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Łoś, M., K. Smolak, G. Guerova, and W. Rohm, 2020: GNSS-based machine learning storm nowcasting. Remote Sens., 12, 2536, https://doi.org/10.3390/rs12162536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., J. Bhend, C. Spirig, and O. Martius, 2019: Developing an automated medium-range flood awareness system for Switzerland based on probabilistic forecasts of integrated water vapor fluxes. Wea. Forecasting, 34, 17591776, https://doi.org/10.1175/WAF-D-18-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meindl, M., S. Schaer, U. Hugentobler, and G. Beutler, 2004: Tropospheric gradient estimation at CODE: Results from global solutions. J. Meteor. Soc. Japan, 82, 331338, https://doi.org/10.2151/jmsj.2004.331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E., S. J. Taubman, P. Brown, M. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nafisi, V., M. Madzak, J. Böhm, A. A. Ardalan, and H. Schuh, 2012: Ray-traced tropospheric delays in VLBI analysis. Radio Sci., 47, RS2020, https://doi.org/10.1029/2011RS004918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., and Coauthors, 2008: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420, https://doi.org/10.1175/2008MWR2550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Padullés, R., E. Cardellach, K.-N. Wang, C. O. Ao, F. J. Turk, and M. Torre-Juárez, 2018: Assessment of Global Navigation Satellite System (GNSS) radio occultation refractivity under heavy precipitation. Atmos. Chem. Phys., 18, 11 69711 708, https://doi.org/10.5194/acp-18-11697-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Priego, E., J. Jones, M. J. Porres, and A. Seco, 2017: Monitoring water vapour with GNSS during a heavy rainfall event in the Spanish Mediterranean area. Geomatics Nat. Hazards Risk, 8, 282294, https://doi.org/10.1080/19475705.2016.1201150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., J. J. Rutz, J. M. Cordeira, M. Dettinger, M. Anderson, D. Reynolds, L. J. Schick, and C. Smallcomb, 2019: A scale to characterize the strength and impacts of atmospheric rivers. Bull. Amer. Meteor. Soc., 100, 269289, https://doi.org/10.1175/BAMS-D-18-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rüeger, J., 2002: Refractive index formulae for electronic distance measurement with radio and millimetre waves. University of New South Wales UNISURV Rep. S-68, 13 pp.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S., and P. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 29492972, https://doi.org/10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saastamoinen, J., 1972: Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. The Use of Artificial Satellites for Geodesy,Geophys. Monogr., Vol. 15, Amer. Geophys. Union, 247251, https://doi.org/10.1029/GM015p0247.

    • Search Google Scholar
    • Export Citation
  • Santhi, Y. D., M. V. Ratnam, S. K. Dhaka, and S. V. Rao, 2014: Global morphology of convection indices observed using COSMIC GPS RO satellite measurements. Atmos. Res., 137, 205215, https://doi.org/10.1016/j.atmosres.2013.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sapucci, L. F., L. A. Machado, E. M. de Souza, and T. B. Campos, 2019: Global positioning system precipitable water vapour (GPS-PWV) jumps before intense rain events: A potential application to nowcasting. Meteor. Appl., 26, 4963, https://doi.org/10.1002/met.1735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shoji, Y., 2013: Retrieval of water vapor inhomogeneity using the Japanese nationwide GPS array and its potential for prediction of convective precipitation. J. Meteor. Soc. Japan, 91, 4362, https://doi.org/10.2151/jmsj.2013-103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shoji, Y., and Coauthors, 2004: Tsukuba GPS dense net campaign observation: Improvement in GPS analysis of slant path delay by stacking one-way postfit phase residuals. J. Meteor. Soc. Japan, 82, 301314, https://doi.org/10.2151/jmsj.2004.301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solheim, F. S., J. Vivekanandan, R. H. Ware, and C. Rocken, 1999: Propagation delays induced in GPS signals by dry air, water vapor, hydrometeors, and other particulates. J. Geophys. Res., 104, 96639670, https://doi.org/10.1029/1999JD900095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, D.-S., and D. A. Grejner-Brzezinska, 2009: Remote sensing of atmospheric water vapor variation from GPS measurements during a severe weather event. Earth Planets Space, 61, 11171125, https://doi.org/10.1186/BF03352964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W., J. Simpson, and M. Mccumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231235, https://doi.org/10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taszarek, M., and Coauthors, 2019: A climatology of thunderstorms across Europe from a synthesis of multiple data sources. J. Climate, 32, 18131837, https://doi.org/10.1175/JCLI-D-18-0372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S.-C., S.-H. Chen, S.-Y. Chen, C.-Y. Huang, and C.-S. Chen, 2014: Evaluating the impact of the COSMIC RO bending angle data on predicting the heavy precipitation episode on 16 June 2008 during SoWMEX-IOP8. Mon. Wea. Rev., 142, 41394163, https://doi.org/10.1175/MWR-D-13-00275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zechiel, P. R., and S. Chiao, 2021: Climate variability of atmospheric rivers and droughts over the west coast of the United States from 2006 to 2019. Atmosphere, 12, 201, https://doi.org/10.3390/atmos12020201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, K., T. Manning, S. Wu, W. Rohm, D. Silcock, and S. Choy, 2015: Capturing the signature of severe weather events in Australia using GPS measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 18391847, https://doi.org/10.1109/JSTARS.2015.2406313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 319 0 0
Full Text Views 354 222 26
PDF Downloads 348 219 34