SLA-Based Orthogonal Parallel Detection of Global Rotationally Coherent Lagrangian Vortices

Fenglin Tian aFrontiers Science Center for Deep Ocean Multispheres and Earth System, School of Marine Technology, Ocean University of China, Qingdao, China
bLaboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Fenglin Tian in
Current site
Google Scholar
PubMed
Close
,
Mengjiao Wang aFrontiers Science Center for Deep Ocean Multispheres and Earth System, School of Marine Technology, Ocean University of China, Qingdao, China

Search for other papers by Mengjiao Wang in
Current site
Google Scholar
PubMed
Close
,
Xiao Liu aFrontiers Science Center for Deep Ocean Multispheres and Earth System, School of Marine Technology, Ocean University of China, Qingdao, China
cKey Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen, China

Search for other papers by Xiao Liu in
Current site
Google Scholar
PubMed
Close
,
Qiu He aFrontiers Science Center for Deep Ocean Multispheres and Earth System, School of Marine Technology, Ocean University of China, Qingdao, China

Search for other papers by Qiu He in
Current site
Google Scholar
PubMed
Close
, and
Ge Chen aFrontiers Science Center for Deep Ocean Multispheres and Earth System, School of Marine Technology, Ocean University of China, Qingdao, China
bLaboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Ge Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

In this paper, we present a highly effective orthogonal parallel algorithm for identifying global rotationally coherent Lagrangian vortices (RCLVs) in heterogeneous systems and a long-time-scale global sea level anomaly (SLA)-based RCLVs product. First, a many-core parallel computing method is used to accelerate the Lagrangian-averaged vorticity deviation (LAVD) computing process. The computation is approximately 8000 times faster than that of a previous method. Second, the global LAVD field is divided into several regions. These regions are searched with a multiprocess CPU parallel pool to identify simultaneously RCLVs. All the identified RCLVs in these regions are merged seamlessly into a global eddy map. The algorithm improves the global RCLV identification efficiency, making the proposed method approximately 20 times faster than a single-threaded method. The LAVD many-core computing method and the RCLV multiprocess parallel method are orthogonally combined. The resulting algorithm is at least 500 times faster than previous nonparallel methods, making the computing of global RCLVs feasible. Third, the advection of Lagrangian particles in RCLVs and Eulerian eddies is analyzed to demonstrate the material coherence of RCLVs and the reliability of our algorithm. Finally, a global RCLVs product from 1993 to 2019 containing 52 567 eddies is produced with a 90-day time interval. This is the first time that a long-time-scale global Lagrangian eddy product has been presented.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 24 June 2022 to include an updated Fig. 12 to replace an older version of the figure that was mistakenly included when originally published.

Corresponding author: Ge Chen, gechen@ouc.edu.cn

Abstract

In this paper, we present a highly effective orthogonal parallel algorithm for identifying global rotationally coherent Lagrangian vortices (RCLVs) in heterogeneous systems and a long-time-scale global sea level anomaly (SLA)-based RCLVs product. First, a many-core parallel computing method is used to accelerate the Lagrangian-averaged vorticity deviation (LAVD) computing process. The computation is approximately 8000 times faster than that of a previous method. Second, the global LAVD field is divided into several regions. These regions are searched with a multiprocess CPU parallel pool to identify simultaneously RCLVs. All the identified RCLVs in these regions are merged seamlessly into a global eddy map. The algorithm improves the global RCLV identification efficiency, making the proposed method approximately 20 times faster than a single-threaded method. The LAVD many-core computing method and the RCLV multiprocess parallel method are orthogonally combined. The resulting algorithm is at least 500 times faster than previous nonparallel methods, making the computing of global RCLVs feasible. Third, the advection of Lagrangian particles in RCLVs and Eulerian eddies is analyzed to demonstrate the material coherence of RCLVs and the reliability of our algorithm. Finally, a global RCLVs product from 1993 to 2019 containing 52 567 eddies is produced with a 90-day time interval. This is the first time that a long-time-scale global Lagrangian eddy product has been presented.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 24 June 2022 to include an updated Fig. 12 to replace an older version of the figure that was mistakenly included when originally published.

Corresponding author: Ge Chen, gechen@ouc.edu.cn
Save
  • Abernathey, R., and G. Haller, 2018: Transport by Lagrangian vortices in the eastern Pacific. J. Phys. Oceanogr., 48, 667685, https://doi.org/10.1175/JPO-D-17-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alistair, A., and Coauthors, 2018: MITgcm user manual. Accessed 14 December 2021, http://mitgcm.org/public/r2_manual/latest/online_documents/manual.html.

    • Search Google Scholar
    • Export Citation
  • Andrade-Canto, F., D. Karrasch, and F. J. Beron-Vera, 2020: Genesis, evolution, and apocalypse of Loop Current rings. Phys. Fluids, 32, 116603, https://doi.org/10.1063/5.0030094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Artale, V., G. Boffetta, A. Celani, M. Cencini, and A. Vulpiani, 1997: Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient. Phys. Fluids, 9, 31623171, https://doi.org/10.1063/1.869433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aurell, E., G. Boffetta, A. Crisanti, G. Paladin, and A. Vulpiani, 1997: Predictability in the large: An extension of the concept of Lyapunov exponent. J. Phys., 30A, 126, https://doi.org/10.1088/0305-4470/30/1/003.

    • Search Google Scholar
    • Export Citation
  • AVISO, 2020: Mesoscale Eddy Trajectory Atlas product (version 1.0). Accessed 14 January 2020, https://www.aviso.altimetry.fr/en/data/products/value-added-products/global-mesoscale-eddy-trajectory-product.html.

    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., Y. Wang, M. J. Olascoaga, G. J. Goni, and G. Haller, 2013: Objective detection of oceanic eddies and the Agulhas leakage. J. Phys. Oceanogr., 43, 14261438, https://doi.org/10.1175/JPO-D-12-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., A. Hadjighasem, Q. Xia, M. J. Olascoaga, and G. Haller, 2019: Coherent Lagrangian swirls among submesoscale motions. Proc. Natl. Acad. Sci. USA, 116, 18 25118 256, https://doi.org/10.1073/pnas.1701392115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blazevski, D., and G. Haller, 2014: Hyperbolic and elliptic transport barriers in three-dimensional unsteady flows. Physica D, 273, 4662, https://doi.org/10.1016/j.physd.2014.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., A. Gizolme, and C. Grados, 2008: Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr., 79, 106119, https://doi.org/10.1016/j.pocean.2008.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272, 234238, https://doi.org/10.1126/science.272.5259.234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, https://doi.org/10.1029/2007GL030812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., Y. Hou, Q. Zhang, and X. Chu, 2010: The eddy pair off eastern Vietnam: Interannual variability and impact on thermohaline structure. Cont. Shelf Res., 30, 715723, https://doi.org/10.1016/j.csr.2009.11.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., G. Han, and X. Yang, 2019: On the intrinsic shape of oceanic eddies derived from satellite altimetry. Remote Sens. Environ., 228, 7589, https://doi.org/10.1016/j.rse.2019.04.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CMEMS, 2020: SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047. Accessed 30 March 2020, https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047.

    • Search Google Scholar
    • Export Citation
  • Doglioli, A., B. Blanke, S. Speich, and G. Lapeyre, 2007: Tracking coherent structures in a regional ocean model with wavelet analysis: Application to Cape Basin eddies. J. Geophys. Res., 112, C05043, https://doi.org/10.1029/2006JC003952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engsig‐Karup, A. P., M. G. Madsen, and S. L. Glimberg, 2012: A massively parallel GPU‐accelerated model for analysis of fully nonlinear free surface waves. Int. J. Numer. Methods Fluids, 70, 2036, https://doi.org/10.1002/fld.2675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enmyren, J., and C. W. Kessler, 2010: SkePU: A multi-backend skeleton programming library for multi-GPU systems. Proc. Fourth Int. Workshop on High-Level Parallel Programming and Applications, Baltimore, MD, ACM, 514, https://doi.org/10.1145/1863482.1863487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faghmous, J. H., I. Frenger, Y. Yao, R. Warmka, A. Lindell, and V. Kumar, 2015: A daily global mesoscale ocean eddy dataset from satellite altimetry. Sci. Data, 2, 150028, https://doi.org/10.1038/sdata.2015.28.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hadjighasem, A., M. Farazmand, D. Blazevski, G. Froyland, and G. Haller, 2017: A critical comparison of Lagrangian methods for coherent structure detection. Chaos, 27, 053104, https://doi.org/10.1063/1.4982720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haller, G., 2002: Lagrangian coherent structures from approximate velocity data. Phys. Fluids, 14, 18511861, https://doi.org/10.1063/1.1477449.

  • Haller, G., 2015: Lagrangian coherent structures. Annu. Rev. Fluid Mech., 47, 137162, https://doi.org/10.1146/annurev-fluid-010313-141322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haller, G., and G. Yuan, 2000: Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D, 147, 352370, https://doi.org/10.1016/S0167-2789(00)00142-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haller, G., and F. J. Beron-Vera, 2013: Coherent Lagrangian vortices: The black holes of turbulence. J. Fluid Mech., 731, R4, https://doi.org/10.1017/jfm.2013.391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haller, G., A. Hadjighasem, M. Farazmand, and F. Huhn, 2016: Defining coherent vortices objectively from the vorticity. J. Fluid Mech., 795, 136173, https://doi.org/10.1017/jfm.2016.151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henson, S. A., and A. C. Thomas, 2008: A census of oceanic anticyclonic eddies in the Gulf of Alaska. Deep-Sea Res. I, 55, 163176, https://doi.org/10.1016/j.dsr.2007.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., 2016: MPTRAC. GitHub, accessed 8 December 2021, https://github.com/slcs-jsc/mptrac.

  • Hwang, C., and S. A. Chen, 2000: Circulations and eddies over the South China Sea derived from TOPEX/Poseidon altimetry. J. Geophys. Res., 105, 23 94323 965, https://doi.org/10.1029/2000JC900092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., and S. Winkler, 2002: Invariant manifolds and Lagrangian dynamics in the ocean and atmosphere. Handbook of Dynamical Systems, Elsevier, 5592.

    • Search Google Scholar
    • Export Citation
  • Joseph, B., and B. Legras, 2002: Relation between kinematic boundaries, stirring, and barriers for the Antarctic polar vortex. J. Atmos. Sci., 59, 11981212, https://doi.org/10.1175/1520-0469(2002)059<1198:RBKBSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karrasch, D., and N. Schilling, 2019: Fast and robust computation of coherent Lagrangian vortices on very large two-dimensional domains. SMAI J. Comput. Math., 6, 101124, https://doi.org/10.5802/smai-jcm.63.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, T., R. Abernathey, A. Sinha, and D. Chen, 2019: Quantifying Eulerian eddy leakiness in an idealized model. J. Geophys. Res. Oceans, 124, 88698886, https://doi.org/10.1029/2019JC015576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., G. Chen, M. Sun, S. Liu, and F. Tian, 2016: A parallel SLA-based algorithm for global mesoscale eddy identification. J. Atmos. Oceanic Technol., 33, 27432754, https://doi.org/10.1175/JTECH-D-16-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lugt, H. J., 1979: The dilemma of defining a vortex. Recent Developments in Theoretical and Experimental Fluid Mechanics, Springer, 309321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite‐volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, E., A. Pascual, and J. C. McWilliams, 2014: A new sea surface height–based code for oceanic mesoscale eddy tracking. J. Atmos. Oceanic Technol., 31, 11811188, https://doi.org/10.1175/JTECH-D-14-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, L., 2011: GPU acceleration of Runge-Kutta integrators. IEEE Trans. Parallel Distributed Syst., 23, 94101, https://doi.org/10.1109/TPDS.2011.61.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCAR, 2021: ESRL/NOAA, Nino 3.4, ASCII text (1948–present). Accessed 12 May 2021, https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni.

    • Search Google Scholar
    • Export Citation
  • Nencioli, F., C. Dong, T. Dickey, L. Washburn, and J. C. McWilliams, 2010: A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Oceanic Technol., 27, 564579, https://doi.org/10.1175/2009JTECHO725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., 2012: Eddies in Marine Science. Springer Science and Business Media, 809 pp.

  • Romero, I. C., and Coauthors, 2016: Tracking the Hercules 265 marine gas well blowout in the Gulf of Mexico. J. Geophys. Res. Oceans, 121, 706724, https://doi.org/10.1002/2015JC011037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadarjoen, I. A., and F. H. Post, 2000: Detection, quantification, and tracking of vortices using streamline geometry. Comput. Graph., 24, 333341, https://doi.org/10.1016/S0097-8493(00)00029-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R., J. Dukowicz, and R. Malone, 1992: Parallel ocean general circulation modeling. Physica D, 60, 3861, https://doi.org/10.1016/0167-2789(92)90225-C.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, M., F. Tian, Y. Liu, and G. Chen, 2017: An improved automatic algorithm for global eddy tracking using satellite altimeter data. Remote Sens., 9, 206, https://doi.org/10.3390/rs9030206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarshish, N., R. Abernathey, C. Zhang, C. O. Dufour, I. Frenger, and S. M. Griffies, 2018: Identifying Lagrangian coherent vortices in a mesoscale ocean model. Ocean Modell., 130, 1528, https://doi.org/10.1016/j.ocemod.2018.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, F., L. Cheng, and G. Chen, 2018: Transfer function-based 2D/3D interactive spatiotemporal visualizations of mesoscale eddies. Int. J. Digit. Earth, 13, 546566, https://doi.org/10.1080/17538947.2018.1543364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, F., D. Wu, L. Yuan, and G. Chen, 2020a: Impacts of the efficiencies of identification and tracking algorithms on the statistical properties of global mesoscale eddies using merged altimeter data. Int. J. Remote Sens., 41, 28352860, https://doi.org/10.1080/01431161.2019.1694724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, F., D. Wu, L. Yuan, G. Chen, and Z. Li, 2020b: Mesoscale eddy identification and tracking dataset based on satellite altimeter. Chinese Academy of Sciences, accessed 6 November 2020, http://data.casearth.cn/en/sdo/detail/5fa668ad1f4600005e005ba3.

    • Search Google Scholar
    • Export Citation
  • Tian, F., X. Liu, M. Wang, Q. He, and G. Chen, 2021: Global rotationally coherent Lagrangian vortices (RCLVs) identification and trajectory dataset based on satellite altimeter. Chinese Academy of Sciences, accessed 11 May 2021, http://data.casearth.cn/en/sdo/detail/609b389af55d00002a00509d.

    • Search Google Scholar
    • Export Citation
  • van Sebille, E., 2019: Parcels. GitHub, accessed 8 December 2021, https://github.com/OceanParcels/parcels.

  • Wang, G., J. Su, and P. C. Chu, 2003: Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett., 30, 2121, https://doi.org/10.1029/2003GL018532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., M. J. Olascoaga, and F. J. Beron‐Vera, 2015: Coherent water transport across the South Atlantic. Geophys. Res. Lett., 42, 40724079, https://doi.org/10.1002/2015GL064089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., F. J. Beron‐Vera, and M. J. Olascoaga, 2016: The life cycle of a coherent Lagrangian Agulhas ring. J. Geophys. Res. Oceans, 121, 39443954, https://doi.org/10.1002/2015JC011620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, S., and Coauthors, 2011: Visualization and analysis of eddies in a global ocean simulation. Comput. Graphics Forum, 30, 9911000, https://doi.org/10.1111/j.1467-8659.2011.01948.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiu, P., F. Chai, L. Shi, H. Xue, and Y. Chao, 2010: A census of eddy activities in the South China Sea during 1993–2007. J. Geophys. Res., 115, C03012, https://doi.org/10.1029/2009JC005657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G., F. Wang, Y. Li, and P. Lin, 2013: Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three‐dimensional structures. J. Geophys. Res. Oceans, 118, 19061925, https://doi.org/10.1002/jgrc.20164.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 188 0 0
Full Text Views 1290 1078 489
PDF Downloads 323 107 14