A High-Resolution Quantitative Precipitation Estimate over Alaska through Kriging-Based Merging of Rain Gauges and Short-Range Regional Precipitation Forecasts

Brett T. Hoover aCooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Brett T. Hoover in
Current site
Google Scholar
PubMed
Close
,
Jason A. Otkin aCooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Jason A. Otkin in
Current site
Google Scholar
PubMed
Close
,
Eugene M. Petrescu bNOAA/National Weather Service Anchorage, Anchorage, Alaska

Search for other papers by Eugene M. Petrescu in
Current site
Google Scholar
PubMed
Close
, and
Emily Niebuhr bNOAA/National Weather Service Anchorage, Anchorage, Alaska

Search for other papers by Emily Niebuhr in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A method is presented to generate quantitative precipitation estimates over Alaska using kriging to merge sparse, unevenly distributed rain gauge observations with quantitative precipitation forecasts from a three-member ensemble of high-resolution numerical weather prediction models. The estimated error variance of the analysis is computed by starting with the estimated error variance from kriging and then refining the variance in k-fold cross validation by an empirically derived inflation factor. The method combines dynamical model forecast information with observational data to deliver a best linear unbiased estimate of precipitation, along with an analysis uncertainty estimate, that provides a much-needed precipitation analysis in a region where sparse in situ observations, poor coverage by remote sensing platforms, and complex terrain introduce large uncertainties that need to be quantified. For 6-hourly accumulation estimates produced four times daily from 1 August 2019 to 31 July 2020, three analysis configurations are tested to measure the value added by including model forecast data and how those data are best utilized in the analysis. Several directions for further improvement and validation of the analysis product are provided.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Hoover’s current affiliation: I. M. Systems Group, NOAA/NWS/NCEP/EMC, College Park, Maryland.

Corresponding author: Brett T. Hoover, brett.hoover@ssec.wisc.edu

Abstract

A method is presented to generate quantitative precipitation estimates over Alaska using kriging to merge sparse, unevenly distributed rain gauge observations with quantitative precipitation forecasts from a three-member ensemble of high-resolution numerical weather prediction models. The estimated error variance of the analysis is computed by starting with the estimated error variance from kriging and then refining the variance in k-fold cross validation by an empirically derived inflation factor. The method combines dynamical model forecast information with observational data to deliver a best linear unbiased estimate of precipitation, along with an analysis uncertainty estimate, that provides a much-needed precipitation analysis in a region where sparse in situ observations, poor coverage by remote sensing platforms, and complex terrain introduce large uncertainties that need to be quantified. For 6-hourly accumulation estimates produced four times daily from 1 August 2019 to 31 July 2020, three analysis configurations are tested to measure the value added by including model forecast data and how those data are best utilized in the analysis. Several directions for further improvement and validation of the analysis product are provided.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Hoover’s current affiliation: I. M. Systems Group, NOAA/NWS/NCEP/EMC, College Park, Maryland.

Corresponding author: Brett T. Hoover, brett.hoover@ssec.wisc.edu
Save
  • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 27412758, https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1975: Optimizing rainfall estimates with the aid of radar. J. Appl. Meteor., 14, 13391345, https://doi.org/10.1175/1520-0450(1975)014<1339:OREWTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caron, J., T. Milewski, M. Buehner, L. Fillion, M. Reszka, S. Macpherson, and J. St-James, 2015: Implementation of deterministic weather forecasting systems based on ensemble–variational data assimilation at Environment Canada. Part II: The regional system. Mon. Wea. Rev., 143, 25602580, https://doi.org/10.1175/MWR-D-14-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Côté, J., S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998: The operational CMC–MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126, 13731395, https://doi.org/10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressie, N., and D. M. Hawkins, 1980: Robust estimation of the variogram: I. J. Int. Assoc. Math. Geol., 12, 115125, https://doi.org/10.1007/BF01035243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehret, U., J. Götzinger, A. Bárdossy, and G. G. S. Pegram, 2008: Radar-based flood forecasting in small catchments, exemplified by the Goldersbach catchment, Germany. Int. J. River Basin Manage., 6, 323329, https://doi.org/10.1080/15715124.2008.9635359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fall, G., D. Soroka, D. Novak, J. Waldstreicher, T. Alcott, and B. Walawender, 2015: Proposal for national snowfall analysis, version 2. NOAA Doc., 6 pp., https://www.nohrsc.noaa.gov/technology/pdf/Proposal_for_National_Snowfall_Analysis_Phase_II.pdf.

    • Search Google Scholar
    • Export Citation
  • Fall, G., M. N. Chanhassen, and K. H. Sparrow, 2020: NOAA’s National Snowfall Analysis: Technical description and evaluation. 100th AMS Annual Meeting, Boston, MA, Amer. Meteor. Soc., 368914, https://ams.confex.com/ams/2020Annual/webprogram/Paper368914.html.

    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 12031211, https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goovaerts, P., 2000: Geostatistical approaches for incorporating elevation in the spatial interpolation of rainfall. J. Hydrol., 228, 113129, https://doi.org/10.1016/S0022-1694(00)00144-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberlandt, U., 2007: Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event. J. Hydrol., 332, 144157, https://doi.org/10.1016/j.jhydrol.2006.06.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hengl, T., G. B. M. Geuvelink, and A. Stein, 2003: Comparison of kriging with external drift and regression-kriging. ITC Tech. Note, 17 pp.

    • Search Google Scholar
    • Export Citation
  • Hofstra, N., M. Haylock, M. New, P. Jones, and C. Frei, 2008: Comparison of six methods for the interpolation of daily, European climate data. J. Geophys. Res., 113, D21110, https://doi.org/10.1029/2008JD010100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J., and Coauthors, 2002: MesoWest: Cooperative mesonets in the western United States. Bull. Amer. Meteor. Soc., 83, 211225, https://doi.org/10.1175/1520-0477(2002)083<0211:MCMITW>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., E. F. Stocker, D. T. Bolvin, E. J. Nelkin, and J. Tan, 2019: GPM IMERG final precipitation L3 half hourly 0.1 degree × 0.1 degree V06. GES DISC, accessed 2 June 2018, https://doi.org/10.5067/GPM/IMERG/3B-HH/06.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z., and R. L. Gall, 2012: Scientific documentation of the NCEP nonhydrostatic multiscale model on the B grid (NMMB). Part 1 dynamics. NCAR Tech. Note NCAR/TN-489+STR, 80 pp., https://doi.org/10.5065/D6WH2MZX.

    • Search Google Scholar
    • Export Citation
  • Jewell, S. A., and N. Gaussiat, 2015: An assessment of kriging-based rain-gauge–radar merging techniques. Quart. J. Roy. Meteor. Soc., 141, 23002313, https://doi.org/10.1002/qj.2522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazić, L., G. Pejanovic, M. Zivkovic, and L. Ilic, 2014: Improved wind forecasts for wind power generation using the Eta model and MOS (model output statistics) method. Energy, 73, 567574, https://doi.org/10.1016/j.energy.2014.06.056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazzara, M. A., A. Coletti, and B. L. Diedrich, 2011: The possibilities of polar meteorology, environmental remote sensing, communications and space weather applications from artificial Lagrange orbit. Adv. Space Res., 48, 18801889, https://doi.org/10.1016/j.asr.2011.04.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Libertino, A., P. Allamano, F. Laio, and P. Claps, 2018: Regional-scale analysis of extreme precipitation from short and fragmented records. Adv. Water Res., 112, 147159, https://doi.org/10.1016/j.advwatres.2017.12.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.

    • Search Google Scholar
    • Export Citation
  • Lloyd, C. D., and P. M. Atkinson, 2001: Assessing uncertainty in estimates with ordinary and indicator kriging. Comput. Geosci., 27, 929937, https://doi.org/10.1016/S0098-3004(00)00132-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinaitis, S. M., S. B. Cocks, Y. Qi, B. T. Kaney, J. Zhang, and K. Howard, 2015: Understanding winter precipitation impacts on automated gauge observations within a real-time system. J. Hydrometeor., 16, 23452363, https://doi.org/10.1175/JHM-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinaitis, S. M., and Coauthors, 2020: A physically based multisensory quantitative precipitation estimation approach for gap-filling radar coverage. J. Hydrometeor., 21, 14851511, https://doi.org/10.1175/JHM-D-19-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheron, G., 1969: Le krigeage universel. Vol. 1. Cahiers du Centre de Morphologie Mathematique, Ecole des Mines de Paris, 83 pp.

  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michelson, D. B., and Coauthors, 2000: BALTEX Radar Data Centre products and their methodologies. SMHI Meteorology and Climatology Rep. RMK 90, 76 pp.

    • Search Google Scholar
    • Export Citation
  • Myers, D. E., 1982: Matrix formulation of co-kriging. Math. Geol., 14, 249257, https://doi.org/10.1007/BF01032887.

  • Myers, D. E., 1991: Interpolation and estimation with spatially located data. Chemom. Intell. Lab. Syst., 11, 209228, https://doi.org/10.1016/0169-7439(91)85001-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, D. E., 1994: Spatial interpolation: An overview. Geoderma, 62, 1728, https://doi.org/10.1016/0016-7061(94)90025-6.

  • Oliver, M. A., and R. Webster, 2014: A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena, 113, 5669, https://doi.org/10.1016/j.catena.2013.09.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., R. Potthast, and A. Lawless, 2018: Nonlinear bias correction for satellite data assimilation using Taylor series polynomials. Mon. Wea. Rev., 146, 263285, https://doi.org/10.1175/MWR-D-17-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pebesma, E. J., 2004: Multivariable geostatistics in S: The gstat package. Comput. Geosci., 30, 683691, https://doi.org/10.1016/j.cageo.2004.03.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow? The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, https://doi.org/10.1175/BAMS-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaake, J., A. Henkel, and S. Cong, 2004: Application of PRISM climatologies for hydrologic modeling and forecasting in the western U.S. 18th Conf. on Hydrology, Seattle, WA, Amer. Meteor. Soc., 5.3, https://ams.confex.com/ams/84Annual/techprogram/paper_72159.htm.

    • Search Google Scholar
    • Export Citation
  • Sideris, I. V., M. Gabella, R. Erdin, and U. Germann, 2014: Real-time radar–rain-gauge merging using spatio-temporal co-kriging with external drift in the Alpine terrain of Switzerland. Quart. J. Roy. Meteor. Soc., 140, 10971111, https://doi.org/10.1002/qj.2188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, S., and G. Pegram, 2005: Combining radar and rain gauge rainfall estimates using conditional merging. Atmos. Sci. Lett., 6, 1922, https://doi.org/10.1002/asl.85.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Search Google Scholar
    • Export Citation
  • Solow, A. R., 1986: Mapping by simple indicator kriging. Math. Geol., 18, 335352, https://doi.org/10.1007/BF00898037.

  • Tobin, C., L. Nicotina, M. B. Parlange, A. Berne, and A. Rinaldo, 2011: Improved interpolation of meteorological forcings for hydrologic applications in a Swiss Alpine region. J. Hydrol., 401, 7789, https://doi.org/10.1016/j.jhydrol.2011.02.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velasco-Forero, C. A., A. Seed, D. Sempere-Torres, and G. Pegram, 2008: Optimal estimation of rainfall fields merging radar and rain gauges data in an operational context. Proc. Fifth European Conf. on Radar in Meteorology and Hydrology, Helsinki, Finland, Vaisala.

    • Search Google Scholar
    • Export Citation
  • Verdin, A., C. Funk, B. Rajagopalan, and W. Kleiber, 2016: Kriging and local polynomial methods for blending satellite-derived and gauge precipitation estimates to support hydrologic early warning systems. IEEE Trans. Geosci. Remote Sens., 54, 25522562, https://doi.org/10.1109/TGRS.2015.2502956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wackernagel, H., 2010: Multivariate Geostatistics: An Introduction with Applications. 3rd ed. Springer, 388 pp.

  • Wang, L., S. Ochoa-Rodriguez, C. Onof, and P. Willems, 2015: Singularity-sensitive gauge-based radar rainfall adjustment methods for urban hydrological applications. Hydrol. Earth Syst. Sci., 19, 40014021, https://doi.org/10.5194/hess-19-4001-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and E. A. Brandes, 1979: Radar measurement of rainfall—A summary. Bull. Amer. Meteor. Soc., 60, 10481058, https://doi.org/10.1175/1520-0477(1979)060<1048:RMORS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, S. J., D. A. Jones, and R. J. Moore, 2000: Static and dynamic calibration of radar data for hydrological use. Hydrol. Earth Syst. Sci., 4, 545554, https://doi.org/10.5194/hess-4-545-2000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 323 0 0
Full Text Views 1792 1559 749
PDF Downloads 399 204 9