An Iterative Storm Segmentation and Classification Algorithm for Convection-Allowing Models and Gridded Radar Analyses

Corey K. Potvin aNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
bSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Corey K. Potvin in
Current site
Google Scholar
PubMed
Close
,
Burkely T. Gallo cCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
dNOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma

Search for other papers by Burkely T. Gallo in
Current site
Google Scholar
PubMed
Close
,
Anthony E. Reinhart aNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Anthony E. Reinhart in
Current site
Google Scholar
PubMed
Close
,
Brett Roberts cCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
aNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
dNOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma

Search for other papers by Brett Roberts in
Current site
Google Scholar
PubMed
Close
,
Patrick S. Skinner cCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
aNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
bSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Patrick S. Skinner in
Current site
Google Scholar
PubMed
Close
,
Ryan A. Sobash eNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Ryan A. Sobash in
Current site
Google Scholar
PubMed
Close
,
Katie A. Wilson cCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
aNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Katie A. Wilson in
Current site
Google Scholar
PubMed
Close
,
Kelsey C. Britt bSchool of Meteorology, University of Oklahoma, Norman, Oklahoma
cCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
aNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Kelsey C. Britt in
Current site
Google Scholar
PubMed
Close
,
Chris Broyles dNOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma

Search for other papers by Chris Broyles in
Current site
Google Scholar
PubMed
Close
,
Montgomery L. Flora cCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
aNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
bSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Montgomery L. Flora in
Current site
Google Scholar
PubMed
Close
,
William J. S. Miller cCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
aNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by William J. S. Miller in
Current site
Google Scholar
PubMed
Close
, and
Clarice N. Satrio cCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
aNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Clarice N. Satrio in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Thunderstorm mode strongly impacts the likelihood and predictability of tornadoes and other hazards, and thus is of great interest to severe weather forecasters and researchers. It is often impossible for a forecaster to manually classify all the storms within convection-allowing model (CAM) output during a severe weather outbreak, or for a scientist to manually classify all storms in a large CAM or radar dataset in a timely manner. Automated storm classification techniques facilitate these tasks and provide objective inputs to operational tools, including machine learning models for predicting thunderstorm hazards. Accurate storm classification, however, requires accurate storm segmentation. Many storm segmentation techniques fail to distinguish between clustered storms, thereby missing intense cells, or to identify cells embedded within quasi-linear convective systems that can produce tornadoes and damaging winds. Therefore, we have developed an iterative technique that identifies these constituent storms in addition to traditionally identified storms. Identified storms are classified according to a seven-mode scheme designed for severe weather operations and research. The classification model is a hand-developed decision tree that operates on storm properties computed from composite reflectivity and midlevel rotation fields. These properties include geometrical attributes, whether the storm contains smaller storms or resides within a larger-scale complex, and whether strong rotation exists near the storm centroid. We evaluate the classification algorithm using expert labels of 400 storms simulated by the NSSL Warn-on-Forecast System or analyzed by the NSSL Multi-Radar/Multi-Sensor product suite. The classification algorithm emulates expert opinion reasonably well (e.g., 76% accuracy for supercells), and therefore could facilitate a wide range of operational and research applications.

Significance Statement

We have developed a new technique for automatically identifying intense thunderstorms in model and radar data and classifying storm mode, which informs forecasters about the risks of tornadoes and other high-impact weather. The technique identifies storms that are often missed by other methods, including cells embedded within storm clusters, and successfully classifies important storm modes that are generally not included in other schemes, such as rotating cells embedded within quasi-linear convective systems. We hope the technique will facilitate a variety of forecasting and research efforts.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Flora’s current affiliation: Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma.

Miller’s current affiliation: Earth Systems Science Interdisciplinary Center, and NOAA/National Environmental Satellite Data and Information Service/Center for Satellite Applications and Research, University of Maryland, College Park, College Park, Maryland.

Corresponding author: Corey K. Potvin, corey.potvin@noaa.gov

Abstract

Thunderstorm mode strongly impacts the likelihood and predictability of tornadoes and other hazards, and thus is of great interest to severe weather forecasters and researchers. It is often impossible for a forecaster to manually classify all the storms within convection-allowing model (CAM) output during a severe weather outbreak, or for a scientist to manually classify all storms in a large CAM or radar dataset in a timely manner. Automated storm classification techniques facilitate these tasks and provide objective inputs to operational tools, including machine learning models for predicting thunderstorm hazards. Accurate storm classification, however, requires accurate storm segmentation. Many storm segmentation techniques fail to distinguish between clustered storms, thereby missing intense cells, or to identify cells embedded within quasi-linear convective systems that can produce tornadoes and damaging winds. Therefore, we have developed an iterative technique that identifies these constituent storms in addition to traditionally identified storms. Identified storms are classified according to a seven-mode scheme designed for severe weather operations and research. The classification model is a hand-developed decision tree that operates on storm properties computed from composite reflectivity and midlevel rotation fields. These properties include geometrical attributes, whether the storm contains smaller storms or resides within a larger-scale complex, and whether strong rotation exists near the storm centroid. We evaluate the classification algorithm using expert labels of 400 storms simulated by the NSSL Warn-on-Forecast System or analyzed by the NSSL Multi-Radar/Multi-Sensor product suite. The classification algorithm emulates expert opinion reasonably well (e.g., 76% accuracy for supercells), and therefore could facilitate a wide range of operational and research applications.

Significance Statement

We have developed a new technique for automatically identifying intense thunderstorms in model and radar data and classifying storm mode, which informs forecasters about the risks of tornadoes and other high-impact weather. The technique identifies storms that are often missed by other methods, including cells embedded within storm clusters, and successfully classifies important storm modes that are generally not included in other schemes, such as rotating cells embedded within quasi-linear convective systems. We hope the technique will facilitate a variety of forecasting and research efforts.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Flora’s current affiliation: Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma.

Miller’s current affiliation: Earth Systems Science Interdisciplinary Center, and NOAA/National Environmental Satellite Data and Information Service/Center for Satellite Applications and Research, University of Maryland, College Park, College Park, Maryland.

Corresponding author: Corey K. Potvin, corey.potvin@noaa.gov
Save
  • Andra, D. L., Jr., 1997: The origin and evolution of the WSR-88D mesocyclone recognition nomogram. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 364365.

    • Search Google Scholar
    • Export Citation
  • Andra, D. L., E. M. Quoetone, and W. F. Bunting, 2002: Warning decision making: The relative roles of conceptual models, technology, strategy, and forecaster expertise on 3 May 1999. Wea. Forecasting, 17, 559566, https://doi.org/10.1175/1520-0434(2002)017<0559:WDMTRR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., J. S. Kain, and S. Lakshmivarahan, 2005: Development of an automated classification procedure for rainfall systems. Mon. Wea. Rev., 133, 844862, https://doi.org/10.1175/MWR2892.1.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2002: RUC20—The 20-km version of the Rapid Update Cycle. NWS Tech. Procedures Bull. 490, 30 pp.

  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 17111732, https://doi.org/10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J., S. Nelson, R. Thompson, and B. Smith, 2013: Tornado probability of detection and lead time as a function of convective mode and environmental parameters. Wea. Forecasting, 28, 12611276, https://doi.org/10.1175/WAF-D-12-00119.1.

    • Search Google Scholar
    • Export Citation
  • Burke, A., N. Snook, D. J. Gagne, S. McCorkle, and A. McGovern, 2020: Calibration of machine learning–based probabilistic hail predictions for operational forecasting. Wea. Forecasting, 35, 149168, https://doi.org/10.1175/WAF-D-19-0105.1.

    • Search Google Scholar
    • Export Citation
  • Chmielewski, V., C. Potvin, P. S. Skinner, A. E. Reinhart, E. R. Mansell, and K. M. Calhoun, 2021: How well can we forecast cloud-to-ground lightning rates within the NSSL Experimental Warn-on-Forecast system using machine learning? 10th Conf. on the Meteorological Application of Lightning Data, Online, Amer. Meteor. Soc., 5.4, https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/380582.

  • Cintineo, J. L., and Coauthors, 2018: The NOAA/CIMSS ProbSevere model: Incorporation of total lightning and validation. Wea. Forecasting, 33, 331345, https://doi.org/10.1175/WAF-D-17-0099.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2020: A real-time, simulated forecasting experiment for advancing the prediction of hazardous convective weather. Bull. Amer. Meteor. Soc., 101, E2022E2024, https://doi.org/10.1175/BAMS-D-19-0298.1.

    • Search Google Scholar
    • Export Citation
  • Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duda, J. D., and W. A. Gallus, 2010: Spring and summer Midwestern severe weather reports in supercells compared to other morphologies. Wea. Forecasting, 25, 190206, https://doi.org/10.1175/2009WAF2222338.1.

    • Search Google Scholar
    • Export Citation
  • Flora, M. L., C. K. Potvin, P. S. Skinner, S. Handler, and A. McGovern, 2021: Using machine learning to generate storm-scale probabilistic guidance of severe weather hazards in the Warn-on-Forecast system. Mon. Wea. Rev., 149, 15351557, https://doi.org/10.1175/MWR-D-20-0194.1.

    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., and Coauthors, 2017: Breaking new ground in severe weather prediction: The 2015 NOAA/Hazardous Weather Testbed spring forecasting experiment. Wea. Forecasting, 32, 15411568, https://doi.org/10.1175/WAF-D-16-0178.1.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., N. A. Snook, and E. V. Johnson, 2008: Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study. Wea. Forecasting, 23, 101113, https://doi.org/10.1175/2007WAF2006120.1.

    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., A. McGovern, and J. Brotzge, 2009: Classification of convective areas using decision trees. J. Atmos. Oceanic Technol., 26, 13411353, https://doi.org/10.1175/2008JTECHA1205.1.

    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., A. McGovern, S. E. Haupt, R. A. Sobash, J. K. Williams, and M. Xue, 2017: Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Wea. Forecasting, 32, 18191840, https://doi.org/10.1175/WAF-D-17-0010.1.

    • Search Google Scholar
    • Export Citation
  • Gilbert, G. F., 1884: Finley’s tornado predictions. Amer. Meteor. J., 1, 166172.

  • Han, L., S. Fu, L. Zhao, Y. Zheng, H. Wang, and Y. Lin, 2009: 3D convective storm identification, tracking, and forecasting—An enhanced TITAN algorithm. J. Atmos. Oceanic Technol., 26, 719732, https://doi.org/10.1175/2008JTECHA1084.1.

    • Search Google Scholar
    • Export Citation
  • Hanssen, A. W., and W. J. A. Kuipers, 1965: On the relationship between the frequency of rain and various meteorological parameters. Meded. Verh., 81, 215.

    • Search Google Scholar
    • Export Citation
  • Jergensen, G. E., A. McGovern, R. Lagerquist, and T. Smith, 2020: Classifying convective storms using machine learning. Wea. Forecasting, 35, 537559, https://doi.org/10.1175/WAF-D-19-0170.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, Y. Wang, A. Reinhart, A. J. Clark, and I. L. Jirak, 2020: Neighborhood- and object-based probabilistic verification of the OU MAP ensemble forecasts during 2017 and 2018 Hazardous Weather Testbeds. Wea. Forecasting, 35, 169191, https://doi.org/10.1175/WAF-D-19-0060.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, J. T., P. L. Mackeen, A. Witt, E. D. Mitchell, G. Stumpf, M. D. Eilts, and K. W. Thomas, 1998: The Storm Cell Identification and Tracking algorithm: An enhanced WSR-88D algorithm. Wea. Forecasting, 13, 263276, https://doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis, and R. Palikonda, 2016: Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on-Forecast system. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297327, https://doi.org/10.1175/WAF-D-15-0107.1.

    • Search Google Scholar
    • Export Citation
  • Lack, S. A., and N. I. Fox, 2012: Development of an automated approach for identifying convective storm type using reflectivity-derived and near-storm environment data. Atmos. Res., 116, 6781, https://doi.org/10.1016/j.atmosres.2012.02.009.

    • Search Google Scholar
    • Export Citation
  • Lack, S. A., G. L. Limpert, and N. I. Fox, 2010: An object-oriented multiscale verification scheme. Wea. Forecasting, 25, 7992, https://doi.org/10.1175/2009WAF2222245.1.

    • Search Google Scholar
    • Export Citation
  • Lagerquist, R. A., A. McGovern, and T. M. Smith, 2017: Machine learning for real-time prediction of damaging straight-line convective wind. Wea. Forecasting, 32, 21752193, https://doi.org/10.1175/WAF-D-17-0038.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., and T. Smith, 2009: Data mining storm attributes from spatial grids. J. Atmos. Oceanic Technol., 26, 23532365, https://doi.org/10.1175/2009JTECHA1257.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., R. Rabin, and V. DeBrunner, 2003: Multiscale storm identification and forecast. Atmos. Res., 67–68, 367380, https://doi.org/10.1016/S0169-8095(03)00068-1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., K. Hondl, and R. Rabin, 2009: An efficient, general-purpose technique for identifying storm cells in geospatial images. J. Atmos. Oceanic Technol., 26, 523537, https://doi.org/10.1175/2008JTECHA1153.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, J. R., J. S. Kain, N. Yussouf, D. C. Dowell, D. M. Wheatley, K. H. Knopfmeier, and T. A. Jones, 2018: Advancing from convection-allowing NWP to Warn-on-Forecast: Evidence of progress. Wea. Forecasting, 33, 599607, https://doi.org/10.1175/WAF-D-17-0145.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, J. R., C. K. Potvin, P. S. Skinner, and A. E. Reinhart, 2021: The vice and virtue of increased horizontal resolution in ensemble forecasts of tornadic thunderstorms in low-CAPE, high-shear environments. Mon. Wea. Rev., 149, 921944, https://doi.org/10.1175/MWR-D-20-0281.1.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197, https://doi.org/10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahalik, M., B. Smith, K. Elmore, D. Kingfield, K. Ortega, and T. Smith, 2019: Estimates of gradients in radar moments using a linear least squares derivative technique. Wea. Forecasting, 34, 415434, https://doi.org/10.1175/WAF-D-18-0095.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Search Google Scholar
    • Export Citation
  • Micheas, A., N. I. Fox, S. A. Lack, and C. K. Wikle, 2007: Cell identification and verification of QPF ensembles using shape analysis techniques. J. Hydrol., 343, 105116, https://doi.org/10.1016/j.jhydrol.2007.05.036.

    • Search Google Scholar
    • Export Citation
  • Miller, W., and Coauthors, 2022: Exploring the usefulness of downscaling free forecasts from the Warn-on-Forecast system. Wea. Forecasting, 37, 181203, https://doi.org/10.1175/WAF-D-21-0079.1.

    • Search Google Scholar
    • Export Citation
  • Ortega, K., T. Smith, J. Zhang, C. Langston, Y. Qi, S. Stevens, and J. Tate, 2012: The Multi-Year Reanalysis of Remotely Sensed Storms (MYRORSS) project. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 74, https://ams.confex.com/ams/26SLS/webprogram/Paper211413.html.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and Coauthors, 2019: Systematic comparison of convection-allowing models during the 2017 NOAA HWT Spring Forecasting Experiment. Wea. Forecasting, 34, 13951416, https://doi.org/10.1175/WAF-D-19-0056.1.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and Coauthors, 2020: Assessing systematic impacts of PBL schemes on storm evolution in the NOAA Warn-on-Forecast system. Mon. Wea. Rev., 148, 25672590, https://doi.org/10.1175/MWR-D-19-0389.1.

    • Search Google Scholar
    • Export Citation
  • Roerdink, J., and A. Meijster, 2001: The watershed transform: Definitions, algorithms and parallelization strategies. Fundam. Inf., 41, 187228, https://doi.org/10.3233/FI-2000-411207.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

  • Skinner, P. S., and Coauthors, 2018: Object-based verification of a prototype Warn-on-Forecast system. Wea. Forecasting, 33, 12251250, https://doi.org/10.1175/WAF-D-18-0020.1.

    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Smith, B. T., T. E. Castellanos, A. C. Winters, C. M. Mead, A. R. Dean, and R. L. Thompson, 2013: Measured severe convective wind climatology and associated convective modes of thunderstorms in the contiguous United States, 2003–09. Wea. Forecasting, 28, 229236, https://doi.org/10.1175/WAF-D-12-00096.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., C. S. Schwartz, D. A. Ahijevych, D. J. Gagne II, C. Potvin, M. L. Weisman, and S. J. Weiss, 2021: Building a machine learning-based system to objectively identify the convective mode in convection-allowing model output. 20th Conf. on Artificial Intelligence for Environmental Science, Online, Amer. Meteor. Soc.

  • Starzec, M., C. R. Homeyer, and G. L. Mullendore, 2017: Storm Labeling in Three Dimensions (SLD3): A volumetric radar echo and dual-polarization updraft classification algorithm. Mon. Wea. Rev., 145, 11271145, https://doi.org/10.1175/MWR-D-16-0089.1.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale Warn-on-Forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871500, https://doi.org/10.1175/2009BAMS2795.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2013: Progress and challenges with Warn-on-Forecast. Atmos. Res., 123, 216, https://doi.org/10.1016/j.atmosres.2012.04.004.

    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., A. Witt, E. D. Mitchell, P. L. Spencer, J. T. Johnson, M. D. Eilts, K. W. Thomas, and D. W. Burgess, 1998: The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D. Wea. Forecasting, 13, 304326, https://doi.org/10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., S. A. Tessendorf, E. S. Godfrey, and H. E. Brooks, 2005: Tornadoes from squall lines and bow echoes. Part I: Climatological distribution. Wea. Forecasting, 20, 2334, https://doi.org/10.1175/WAF-835.1.

    • Search Google Scholar
    • Export Citation
  • Van der Walt, S., J. L. Schonberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu, 2014: Scikit-image: Image processing in Python. PeerJ, 2, e453, https://doi.org/10.7717/peerj.453.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on-Forecast system. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, https://doi.org/10.1175/WAF-D-15-0043.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

All Time Past Year Past 30 Days
Abstract Views 523 0 0
Full Text Views 740 361 25
PDF Downloads 698 336 30