Error Characterization of Significant Wave Heights in Multidecadal Satellite Altimeter Product, Model Hindcast, and In Situ Measurements Using the Triple Collocation Technique

Guillaume Dodet aUniv. Brest, CNRS, Ifremer, IRD, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Plouzané, France

Search for other papers by Guillaume Dodet in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0200-6858
,
Saleh Abdalla bEuropean Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Saleh Abdalla in
Current site
Google Scholar
PubMed
Close
,
Matias Alday aUniv. Brest, CNRS, Ifremer, IRD, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Plouzané, France

Search for other papers by Matias Alday in
Current site
Google Scholar
PubMed
Close
,
Mickaël Accensi aUniv. Brest, CNRS, Ifremer, IRD, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Plouzané, France

Search for other papers by Mickaël Accensi in
Current site
Google Scholar
PubMed
Close
,
Jean Bidlot bEuropean Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Jean Bidlot in
Current site
Google Scholar
PubMed
Close
, and
Fabrice Ardhuin aUniv. Brest, CNRS, Ifremer, IRD, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Plouzané, France

Search for other papers by Fabrice Ardhuin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ocean wave measurements are of major importance for a number of applications including climate studies, ship routing, marine engineering, safety at sea, and coastal risk management. Depending on the scales and regions of interest, a variety of data sources may be considered (e.g., in situ data, Voluntary Observing Ship observations, altimeter records, numerical wave models), each one with its own characteristics in terms of sampling frequency, spatial coverage, accuracy, and cost. To combine multiple source of wave information (e.g., for data assimilation scheme in numerical weather prediction models), the error characteristics of each measurement system need to be defined. In this study, we use the triple collocation technique to estimate the random error variance of significant wave heights from a comprehensive collection of collocated in situ, altimeter, and model data. The in situ dataset is a selection of 122 platforms provided by the Copernicus Marine Service In Situ Thematic Center. The altimeter dataset is the ESA Sea State CCI version1 L2P product. The model dataset is the WW3-LOPS hindcast forced with bias-corrected ERA5 winds and an adjusted T475 parameterization of wave generation and dissipation. Compared to previous similar analyses, the extensive (∼250 000 entries) triple collocation dataset generated for this study provides some new insights on the error variability associated to differences in in situ platforms, satellite missions, sea state conditions, and seasonal variability.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guillaume Dodet, guillaume.dodet@ifremer.fr

Abstract

Ocean wave measurements are of major importance for a number of applications including climate studies, ship routing, marine engineering, safety at sea, and coastal risk management. Depending on the scales and regions of interest, a variety of data sources may be considered (e.g., in situ data, Voluntary Observing Ship observations, altimeter records, numerical wave models), each one with its own characteristics in terms of sampling frequency, spatial coverage, accuracy, and cost. To combine multiple source of wave information (e.g., for data assimilation scheme in numerical weather prediction models), the error characteristics of each measurement system need to be defined. In this study, we use the triple collocation technique to estimate the random error variance of significant wave heights from a comprehensive collection of collocated in situ, altimeter, and model data. The in situ dataset is a selection of 122 platforms provided by the Copernicus Marine Service In Situ Thematic Center. The altimeter dataset is the ESA Sea State CCI version1 L2P product. The model dataset is the WW3-LOPS hindcast forced with bias-corrected ERA5 winds and an adjusted T475 parameterization of wave generation and dissipation. Compared to previous similar analyses, the extensive (∼250 000 entries) triple collocation dataset generated for this study provides some new insights on the error variability associated to differences in in situ platforms, satellite missions, sea state conditions, and seasonal variability.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guillaume Dodet, guillaume.dodet@ifremer.fr

Supplementary Materials

    • Supplemental Materials (PDF 158 KB)
Save
  • Abdalla, S., 2021: Are Jason-2 significant wave height measurements still useful. Adv. Space Res., 68, 802807, https://doi.org/10.1016/j.asr.2019.08.032.

    • Search Google Scholar
    • Export Citation
  • Abdalla, S., and G. De Chiara, 2017: Estimating random errors of scatterometer, altimeter, and model wind speed data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 24062414, https://doi.org/10.1109/JSTARS.2017.2659220.

    • Search Google Scholar
    • Export Citation
  • Abdalla, S., and P. Janssen, 2017: Monitoring waves and surface winds by satellite altimetry: Applications. Satellite Altimetry over Oceans and Land Surfaces, CRC Press, 46 pp.

  • Abdalla, S., P. Janssen, and J.-R. Bidlot, 2011: Altimeter near real time wind and wave products: Random error estimation. Mar. Geod., 34, 393406, https://doi.org/10.1080/01490419.2011.585113.

  • Alday, M., M. Accensi, F. Ardhuin, and G. Dodet, 2021: A global wave parameter database for geophysical applications. Part 3: Improved forcing and spectral resolution. Ocean Modell., 166, 101848, https://doi.org/10.1016/j.ocemod.2021.101848.

    • Search Google Scholar
    • Export Citation
  • Aouf, L., D. Hauser, B. Chapron, A. Toffoli, C. Tourain, and C. Peureux, 2021: New directional wave satellite observations: Towards improved wave forecasts and climate description in Southern Ocean. Geophys. Res. Lett., 48, e2020GL091187, https://doi.org/10.1029/2020GL091187.

  • Ardhuin, F., and Coauthors, 2010: Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. J. Phys. Oceanogr., 40, 1917–1941, https://doi.org/10.1175/2010JPO4324.1.

  • Ardhuin, F., J. Tournadre, P. Queffelou, and F. Girard-Ardhuin, 2011: Observation and parameterization of small icebergs: Drifting breakwaters in the Southern Ocean. Ocean Modell., 39, 405410, https://doi.org/10.1016/j.ocemod.2011.03.004.

  • Ardhuin, F., and Coauthors, 2019: Observing sea states. Front. Mar. Sci., 6, 124, https://doi.org/10.3389/fmars.2019.00124.

  • Caires, S., and A. Sterl, 2003: Validation of ocean wind and wave data using triple collocation. J. Geophys. Res., 108, 3098, https://doi.org/10.1029/2002JC001491.

  • Dodet, G., and Coauthors, 2020: The Sea State CCI dataset v1: Towards a sea state climate data record based on satellite observations. Earth Syst. Sci. Data, 12, 19291951, https://doi.org/10.5194/essd-12-1929-2020.

    • Search Google Scholar
    • Export Citation
  • Durrant, T. H., D. J. M. Greenslade, and I. Simmonds, 2009: Validation of Jason-1 and Envisat remotely sensed wave heights. J. Atmos. Oceanic Technol., 26, 123134, https://doi.org/10.1175/2008JTECHO598.1.

    • Search Google Scholar
    • Export Citation
  • Girard-Ardhuin, F., and R. Ezraty, 2012: Enhanced Arctic sea ice drift estimation merging radiometer and scatterometer data. IEEE Trans. Geosci. Remote Sens., 50, 26392648, https://doi.org/10.1109/TGRS.2012.2184124.

    • Search Google Scholar
    • Export Citation
  • Gruber, A., C. H. Su, S. Zwieback, W. Crow, W. Dorigo, and W. Wagner, 2016: Recent advances in (soil moisture) triple collocation analysis. Int. J. Appl. Earth Obs. Geoinf., 45, 200211, https://doi.org/10.1016/j.jag.2015.09.002.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, S., and K. Hasselmann, 1985: Computation and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I: A new method for efficient computations of the exact nonlinear transfer integral. J. Phys. Oceanogr., 15, 13691377, https://doi.org/10.1175/1520-0485(1985)015<1369:CAPOTN>2.0.CO;2.

  • Hasselmann, S., K. Hasselmann, J. Allender, and T. Barnett, 1985: Computation and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 15, 13781391, https://doi.org/10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2.

  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Izaguirre, C., F. J. Méndez, M. Menéndez, and I. J. Losada, 2011: Global extreme wave height variability based on satellite data. Geophys. Res. Lett., 38, L10607, https://doi.org/10.1029/2011GL047302.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., S. Abdalla, H. Hersbach, and J.-R. Bidlot, 2007: Error estimation of buoy, satellite, and model wave height data. J. Atmos. Oceanic Technol., 24, 16651677, https://doi.org/10.1175/JTECH2069.1.

    • Search Google Scholar
    • Export Citation
  • Law-Chune, S., L. Aouf, A. Dalphinet, B. Levier, Y. Drillet, and M. Drevillon, 2021: WAVERYS: A CMEMS global wave reanalysis during the altimetry period. Ocean Dyn., 71, 357378, https://doi.org/10.1007/s10236-020-01433-w.

  • Leckler, F., 2013: Observation et modélisation du déferlement des vagues. Ph.D. thesis, Université Européenne de Bretagne, 240 pp., http://tinyurl.com/leckler-thesis.

  • Merchant, C. J., and Coauthors, 2017: Uncertainty information in climate data records from Earth observation. Earth Syst. Sci. Data, 9, 511527, https://doi.org/10.5194/essd-9-511-2017.

    • Search Google Scholar
    • Export Citation
  • Mulet, S., and Coauthors, 2021: The new CNES-CLS18 global mean dynamic topography. Ocean Sci., 17, 789808, https://doi.org/10.5194/os-17-789-2021.

  • O’Carroll, A. G., J. R. Eyre, and R. W. Saunders, 2008: Three-way error analysis between AATSR, AMSR-E, and in situ sea surface temperature observations. J. Atmos. Oceanic Technol., 25, 11971207, https://doi.org/10.1175/2007JTECHO542.1.

    • Search Google Scholar
    • Export Citation
  • Parker, W. S., 2016: Reanalyses and observations: What’s the difference? Bull. Amer. Meteor. Soc., 97, 15651572, https://doi.org/10.1175/BAMS-D-14-00226.1.

    • Search Google Scholar
    • Export Citation
  • Piollé, J.-F., G. Dodet, and Y. Quilfen, 2020: ESA Sea State Climate Change Initiative (Sea_State_cci): Global remote sensing multi-mission along-track significant wave height, L2P product, version 1.1. Centre for Environmental Data Analysis, accessed 1 March 2022, https://doi.org/10.5285/f91cd3ee7b6243d5b7d41b9beaf397e1.

  • Portabella, M., and A. Stoffelen, 2009: On scatterometer ocean stress. J. Atmos. Oceanic Technol., 26, 368382, https://doi.org/10.1175/2008JTECHO578.1.

    • Search Google Scholar
    • Export Citation
  • Quartly, G. D., M. A. Srokosz, and A. C. McMillan, 2001: Analyzing altimeter artifacts: Statistical properties of ocean waveforms. J. Atmos. Oceanic Technol., 18, 20742091, https://doi.org/10.1175/1520-0426(2001)018<2074:AAASPO>2.0.CO;2.

  • Queffeulou, P., 2004: Long-term validation of wave height measurements from altimeters. Mar. Geod., 27, 495510, https://doi.org/10.1080/01490410490883478.

  • Quilfen, Y., and B. Chapron, 2021: On denoising satellite altimeter measurements for high-resolution geophysical signal analysis. Adv. Space Res., 68, 875891, https://doi.org/10.1016/j.asr.2020.01.005.

  • Rascle, N., and F. Ardhuin, 2013: A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization. Ocean Modell., 70, 174188, https://doi.org/10.1016/j.ocemod.2012.12.001.

    • Search Google Scholar
    • Export Citation
  • Ribal, A., and I. R. Young, 2019: 33 years of globally calibrated wave height and wind speed data based on altimeter observations. Sci. Data, 6, 77, https://doi.org/10.1038/s41597-019-0083-9.

    • Search Google Scholar
    • Export Citation
  • Rio, M.-H., S. Mulet, and N. Picot, 2014: Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys. Res. Lett., 41, 89188925, https://doi.org/10.1002/2014GL061773.

  • Sepulveda, H., P. Queffeulou, and F. Ardhuin, 2015: Assessment of SARAL/AltiKa wave height measurements relative to buoy, Jason-2, and CryoSat-2 data. Mar. Geod., 38 (Suppl. 1), 449465, https://doi.org/10.1080/01490419.2014.1000470.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and R. Scharroo, 2015: Waveform aliasing in satellite radar altimetry. IEEE Trans. Geosci. Remote Sens., 53, 16711682, https://doi.org/10.1109/TGRS.2014.2331193.

    • Search Google Scholar
    • Export Citation
  • Stoffelen, A., 1998: Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophys. Res., 103, 77557766, https://doi.org/10.1029/97JC03180.

  • Timmermans, B. W., C. P. Gommenginger, G. Dodet, and J.-R. Bidlot, 2020: Global wave height trends and variability from new multimission satellite altimeter products, reanalyses, and wave buoys. Geophys. Res. Lett., 47, e2019GL086 880, https://doi.org/10.1029/2019GL086880.

  • Tournadre, J., 1998: Determination of rain cell characteristics from the analysis of TOPEX altimeter echo waveforms. J. Atmos. Oceanic Technol., 15, 387406, https://doi.org/10.1175/1520-0426(1998)015<0387:DORCCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tournadre, J., 2004: Validation of Jason and Envisat altimeter dual frequency rain flags. Mar. Geod., 27, 153169, https://doi.org/10.1080/01490410490465616.

  • Tournadre, J., N. Bouhier, F. Girard-Ardhuin, and F. Rémy, 2016: Antarctic iceberg distributions 2002–2010. J. Geophys. Res. Oceans, 121, 327349, https://doi.org/10.1002/2015JC011178.

  • Verron, J., and Coauthors, 2015: The SARAL/AltiKa altimetry satellite mission. Mar. Geod., 38, 221, https://doi.org/10.1080/01490419.2014.1000471.

  • Vogelzang, J., and A. Stoffelen, 2012: Triple collocation. NWPSAF Tech. Rep. NWPSAF-KN-TR-021, 24 pp., https://knmi-scatterometer-website-prd.s3-eu-west-1.amazonaws.com/publications/triplecollocation_nwpsaf_tr_kn_021_1.0.pdf.

  • WAVEWATCH III Development Group, 2019: User manual and system documentation of WAVEWATCH III version 6.07. NOAA/NWS/NCEP/MMAB Tech. Note 333, 465 pp.

  • Young, I. R., and A. Ribal, 2019: Multiplatform evaluation of global trends in wind speed and wave height. Science, 364, 548552, https://doi.org/10.1126/science.aav9527.

    • Search Google Scholar
    • Export Citation
  • Zieger, S., J. Vinoth, and I. R. Young, 2009: Joint calibration of multiplatform altimeter measurements of wind speed and wave height over the past 20 years. J. Atmos. Oceanic Technol., 26, 25492564, https://doi.org/10.1175/2009JTECHA1303.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 537 0 0
Full Text Views 608 410 19
PDF Downloads 615 362 16