Remotely Monitored Buoys for Observing the Growth and Development of Sea Ice In Situ

Rachel W. Obbard aSETI Institute, Mountain View, California
dDartmouth College, Hanover, New Hampshire

Search for other papers by Rachel W. Obbard in
Current site
Google Scholar
PubMed
Close
,
Alice C. Bradley bGeoscience Department, Williams College, Williamstown, Massachusetts
dDartmouth College, Hanover, New Hampshire

Search for other papers by Alice C. Bradley in
Current site
Google Scholar
PubMed
Close
, and
Ignatius Rigor cPolar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Ignatius Rigor in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes a remotely monitored buoy that, when deployed in open water prior to freeze up, permits scientists to monitor not only temperature with depth, and hence freeze up and sea ice thickness, but also the progression of sea ice development—e.g., the extent of cover at a given depth as it grows (solid fraction), the brine volume of the ice, and the salinity of the water just below, which is driven by brine expulsion. Microstructure and In situ Salinity and Temperature (MIST) buoys use sensor “ladders” that, in our prototypes, extend to 88 cm below the surface. We collected hourly measurements of surface air temperature and water temperature and electrical impedance every 3 cm to track the seasonal progression of sea ice growth in Elson Lagoon (Utqiaġvik, Alaska) over the 2017/18 ice growth season. The MIST buoy has the potential to collect detailed sea ice microstructural information over time and help scientists monitor all parts of the growth/melt cycle, including not only the freezing process but the effects of meteorological changes, changing snow cover, the interaction of meltwater, and drainage.

Significance Statement

There is a need to better understand how an increasing influx of freshwater, one part of a changing Arctic climate, will affect the development of sea ice. Current instruments can provide information on the growth rate, extent, and thickness of sea ice, but not direct observations of the structure of the ice during freeze up, something that is tied to salinity and local air and water temperature. A first deployment in Elson Lagoon in Utqiaġvik, Alaska, showed promising results; we observed fluctuations in ice temperatures in response to brief warmings in air temperature that resulted in changes in the conductivity, liquid fraction, and brine volume fraction within the ice.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rachel W. Obbard, robbard@seti.org

Abstract

This paper describes a remotely monitored buoy that, when deployed in open water prior to freeze up, permits scientists to monitor not only temperature with depth, and hence freeze up and sea ice thickness, but also the progression of sea ice development—e.g., the extent of cover at a given depth as it grows (solid fraction), the brine volume of the ice, and the salinity of the water just below, which is driven by brine expulsion. Microstructure and In situ Salinity and Temperature (MIST) buoys use sensor “ladders” that, in our prototypes, extend to 88 cm below the surface. We collected hourly measurements of surface air temperature and water temperature and electrical impedance every 3 cm to track the seasonal progression of sea ice growth in Elson Lagoon (Utqiaġvik, Alaska) over the 2017/18 ice growth season. The MIST buoy has the potential to collect detailed sea ice microstructural information over time and help scientists monitor all parts of the growth/melt cycle, including not only the freezing process but the effects of meteorological changes, changing snow cover, the interaction of meltwater, and drainage.

Significance Statement

There is a need to better understand how an increasing influx of freshwater, one part of a changing Arctic climate, will affect the development of sea ice. Current instruments can provide information on the growth rate, extent, and thickness of sea ice, but not direct observations of the structure of the ice during freeze up, something that is tied to salinity and local air and water temperature. A first deployment in Elson Lagoon in Utqiaġvik, Alaska, showed promising results; we observed fluctuations in ice temperatures in response to brief warmings in air temperature that resulted in changes in the conductivity, liquid fraction, and brine volume fraction within the ice.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rachel W. Obbard, robbard@seti.org
Save
  • Bauch, D., J. A. Hölemann, A. Nikulina, C. Wegner, M. A. Janout, L. A. Timokhov, and H. Kassens, 2013: Correlation of river water and local sea‐ice melting on the Laptev Sea shelf (Siberian Arctic). J. Geophys. Res. Oceans, 118, 550561, https://doi.org/10.1002/jgrc.20076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., and O. Andry, 2017: Towards a rain-dominated Arctic. Nat. Climate Change, 7, 263267, https://doi.org/10.1038/nclimate3240.

  • Boisvert, L. N., A. A. Petty, and J. C. Stroeve, 2016: The impact of the extreme winter 2015/16 Arctic cyclone on the Barents–Kara Seas. Mon. Wea. Rev., 144, 42794287, https://doi.org/10.1175/MWR-D-16-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, A., R. Obbard, and I. Rigor, 2020: In situ sea ice temperature and relative conductivity measurements from MIST buoy in Elson Lagoon, October 2017–March 2018. Arctic Data Center, https://doi.org/10.18739/A26W9696T.

    • Search Google Scholar
    • Export Citation
  • Carpenter, L. J., and Coauthors, 2005: Abiotic source of reactive organic halogens in the sub-Arctic atmosphere. Environ. Sci. Technol., 39, 88128816, https://doi.org/10.1021/es050918w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Centurioni, L., A. Horányi, C. Cardinali, E. Charpentier, and R. Lumpkin, 2017: A global ocean observing system for measuring sea level atmospheric pressure: Effects and impacts on numerical weather prediction. Bull. Amer. Meteor. Soc., 98, 231238, https://doi.org/10.1175/BAMS-D-15-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 10291136.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, https://doi.org/10.1029/2007GL031972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., D. K. Hall, and I. Rigor, 2019: Ice surface temperatures in the Arctic region. Taking the Temperature of the Earth: Steps Towards Integrating Understanding of Variability and Change, G. C. Hulley and D. Ghent, Eds., Elsevier, 151184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, G. F. N., and W. F. Weeks, 1986: Changes in the salinity and porosity of sea-ice samples during shipping and storage. J. Glaciol., 32, 371375, https://doi.org/10.1017/S0022143000012065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dimova, N. T., A. Paytan, J. D. Kessler, K. J. Sparrow, F. Garcia-Tigreros Kodovska, A. L. Lecher, J. Murray, and S. M. Tulaczyk, 2015: Current magnitude and mechanisms of groundwater discharge in the Arctic: Case study from Alaska. Environ. Sci. Technol., 49, 12 03612 043, https://doi.org/10.1021/acs.est.5b02215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eicken, H., 2000: From the microscopic to the macroscopic, to the regional scale: Growth, microstructure, and properties of sea ice. Sea Ice: An Introduction to its Physics, Chemistry, Biology and Geology, D. Thomas and G. S. Dieckmann, Eds., Blackwell Science, 2281.

    • Search Google Scholar
    • Export Citation
  • GMD, 2018: Barrow Atmospheric Baseline Observatory, United States (BRW) meteorology, hourly averages, December 2017–March 2018. NOAA/ESRL, accessed 18 July 2021, https://gml.noaa.gov/dv/data/index.php?parameter_name=Meteorology&site=BRW&frequency=Hourly%2BAverages.

    • Search Google Scholar
    • Export Citation
  • Golden, K. M., H. Eicken, A. L. Heaton, J. Miner, D. J. Pringle, and J. Zhu, 2007: Thermal evolution of permeability and microstructure in sea ice. Geophys. Res. Lett., 34, L16501, https://doi.org/10.1029/2007GL030447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gow, A. J., and S. Epstein, 1972: On the use of stable isotopes to trace the origins of ice in a floating ice tongue. J. Geophys. Res., 77, 65526557, https://doi.org/10.1029/JC077i033p06552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grenfell, T. C., 1983: A theoretical model of the optical properties of sea ice in the visible and near infrared. J. Geophys. Res., 88, 97239735, https://doi.org/10.1029/JC088iC14p09723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, C. M., J. W. McClelland, T. L. Connelly, B. C. Crump, and K. H. Dunton, 2017: Salinity and temperature regimes in eastern Alaskan Beaufort Sea lagoons in relation to source water contributions. Estuaries Coasts, 40, 5062, https://doi.org/10.1007/s12237-016-0123-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Search Google Scholar
    • Export Citation
  • Jackson, K., J. Wilkinson, T. Maksym, D. Meldrum, J. Beckers, C. Haas, and D. Mackenzie, 2013: A novel and low-cost sea ice mass balance buoy. J. Atmos. Oceanic Technol., 30, 26762688, https://doi.org/10.1175/JTECH-D-13-00058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., C. C. Raible, D. Hofer, and T. F. Stocker, 2012: The freshwater balance of polar regions in transient simulations from 1500 to 2100 AD using a comprehensive coupled climate model. Climate Dyn., 39, 347363, https://doi.org/10.1007/s00382-011-1199-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lieb-Lappen, R. M., E. J. Golden, and R. W. Obbard, 2017a: Metrics for interpreting the microstructure of sea ice using X-ray micro-computed tomography. Cold Reg. Res. Technol., 138, 2437, https://doi.org/10.1016/j.coldregions.2017.03.001.

    • Search Google Scholar
    • Export Citation
  • Lieb-Lappen, R. M., D. D. Kumar, S. D. Pauls, and R. W. Obbard, 2017b: A network model for characterizing brine channels in sea ice. Cryosphere, 12, 10131026, https://doi.org/10.5194/tc-12-1013-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Light, B., G. A. Maykut, and T. C. Grenfell, 2003: Effects of temperature on the microstructure of first-year Arctic sea ice. J. Geophys. Res., 108, 3051, https://doi.org/10.1029/2001JC000887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Light, B., G. A. Maykut, and T. C. Grenfell, 2004: A temperature-dependent, structural-optical model of first-year sea ice. J. Geophys. Res., 109, C06013, https://doi.org/10.1029/2003JC002164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakawo, M., and N. K. Sinha, 1984: A note on brine layer spacing of first-year sea ice. Atmos.–Ocean, 22, 193206, https://doi.org/10.1080/07055900.1984.9649193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nghiem, S. V., D. K. Hall, I. G. Rigor, P. Li, and G. Neumann, 2014: Effects of Mackenzie River discharge and bathymetry on sea ice in the Beaufort Sea. Geophys. Res. Lett., 41, 873879, https://doi.org/10.1002/2013GL058956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notz, D., and M. G. Worster, 2008: In situ measurements of the evolution of young sea ice. J. Geophys. Res., 113, C03001, https://doi.org/10.1029/2007JC004333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notz, D., J. S. Wettlaufer, and M. G. Worster, 2005: A non-destructive method for measuring the salinity and solid fraction of growing sea ice in situ. J. Glaciol., 51, 159166, https://doi.org/10.3189/172756505781829548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NSIDC, 2018: Nearing the Arctic’s seasonal minimum. University of Colorado, http://nsidc.org/arcticseaicenews/2018/09/.

  • Nummelin, A., M. Ilicak, C. Li, and L. H. Smedsrud, 2016: Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover. J. Geophys. Res. Oceans, 121, 617637, https://doi.org/10.1002/2015JC011156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Obbard, R. W., G. Troderman, and I. Baker, 2009: Imaging brine and air inclusions in sea ice using micro X-ray computed tomography. J. Glaciol., 55, 11131115, https://doi.org/10.3189/002214309790794814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Obbard, R. W., R. Lieb-Lappen, K. V. Nordick, E. J. Golden, J. R. Leonard, A. Lanzirotti, and M. G. Newville, 2016: Synchrotron X-ray fluorescence spectroscopy of salts in natural sea ice. Earth Space Sci., 3, 463479, https://doi.org/10.1002/2016EA000172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Opsahl, S., R. Benner, and R. M. W. Amon, 1999: Major flux of terrigenous dissolved organic matter through the Arctic Ocean. Limnol. Oceanogr., 44, 20172023, https://doi.org/10.4319/lo.1999.44.8.2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., and J. C. Comiso, 2013: On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning and an August storm. Geophys. Res. Lett., 40, 13561361, https://doi.org/10.1002/grl.50349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petrich, C., P. J. Langhorne, and Z. F. Sun, 2006: Modelling the interrelationships between permeability, effective porosity and total porosity in sea ice. Cold Reg. Sci. Technol., 44, 131144, https://doi.org/10.1016/j.coldregions.2005.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, I. J., A. J. Gough, P. J. Langhorne, A. R. Mahoney, G. H. Leonard, R. Van Hale, and T. G. Haskell, 2015: First-year land-fast Antarctic sea ice as an archive of ice shelf meltwater fluxes. Cold Reg. Sci. Technol., 113, 6370, https://doi.org/10.1016/j.coldregions.2015.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., P. A. Arkin, L. Ren, and S. S. P. Shen, 2012: Improved reconstruction of global precipitation since 1900. J. Atmos. Oceanic Technol., 29, 15051517, https://doi.org/10.1175/JTECH-D-12-00001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, M., A. C. Bliss, G. Peng, W. N. Meier, and S. Dickinson, 2019: Arctic sea ice seasonal change and melt/freeze climate indicators from satellite data, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 1 November 2020, https://doi.org/10.5067/KINANQKEZI4T.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., T. Markus, L. Boisvert, J. Miller, and A. Barrett, 2014: Changes in Arctic melt season and implications for sea ice loss. Geophys. Res. Lett., 41, 12161225, https://doi.org/10.1002/2013GL058951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, C., and I. G. Rigor, 2013: Arctic marginal ice zone trending wider in summer and narrower in winter. Geophys. Res. Lett., 40, 48644868, https://doi.org/10.1002/grl.50928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toyota, T., I. J. Smith, A. J. Gough, P. J. Langhorne, G. H. Leonard, R. J. Van Hale, and T. G. Haskell, 2013: Oxygen isotope fractionation during the freezing of sea water. J. Glaciol., 59, 697710, https://doi.org/10.3189/2013JoG12J163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vancoppenolle, M., G. Madec, M. Thomas, and T. J. McDougall, 2019: Thermodynamics of sea ice phase composition revisited. J. Geophys. Res. Oceans, 124, 615634, https://doi.org/10.1029/2018JC014611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worster, M. G., and D. W. Rees Jones, 2015: Sea-ice thermodynamics and brine drainage. Philos. Trans. Roy. Soc., A373, 20140166, https://doi.org/10.1098/rsta.2014.0166.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 599 0 0
Full Text Views 926 646 455
PDF Downloads 352 119 5