On Characterizing Ocean Kinematics from Surface Drifters

Sebastian Essink aApplied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Sebastian Essink in
Current site
Google Scholar
PubMed
Close
,
Verena Hormann bLagrangian Drifter Laboratory, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Verena Hormann in
Current site
Google Scholar
PubMed
Close
,
Luca R. Centurioni bLagrangian Drifter Laboratory, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Luca R. Centurioni in
Current site
Google Scholar
PubMed
Close
, and
Amala Mahadevan cWoods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Amala Mahadevan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Horizontal kinematic properties, such as vorticity, divergence, and lateral strain rate, are estimated from drifter clusters using three approaches. At submesoscale horizontal length scales O(110)km, kinematic properties become as large as planetary vorticity f, but challenging to observe because they evolve on short time scales O(hourstodays). By simulating surface drifters in a model flow field, we quantify the sources of uncertainty in the kinematic property calculations due to the deformation of cluster shape. Uncertainties arise primarily due to (i) violation of the linear estimation methods and (ii) aliasing of unresolved scales. Systematic uncertainties (iii) due to GPS errors, are secondary but can become as large as (i) and (ii) when aspect ratios are small. Ideal cluster parameters (number of drifters, length scale, and aspect ratio) are determined and error functions estimated empirically and theoretically. The most robust method—a two-dimensional, linear least squares fit—is applied to the first few days of a drifter dataset from the Bay of Bengal. Application of the length scale and aspect-ratio criteria minimizes errors (i) and (ii), and reduces the total number of clusters and so computational cost. The drifter-estimated kinematic properties map out a cyclonic mesoscale eddy with a surface, submesoscale fronts at its perimeter. Our analyses suggest methodological guidance for computing the two-dimensional kinematic properties in submesoscale flows, given the recently increasing quantity and quality of drifter observations, while also highlighting challenges and limitations.

Significance Statement

The purpose of this study is to provide insights and guidance for computing horizontal velocity gradients from clusters (i.e., three or more) of Lagrangian surface ocean drifters. The uncertainty in velocity gradient estimates depends strongly on the shape deformation of drifter clusters by the ocean currents. We propose criteria for drifter cluster length scales and aspect ratios to reduce uncertainties and develop ways of estimating the magnitude of the resulting errors. The findings are applied to a real ocean dataset from the Bay of Bengal.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sebastian Essink, sessink@uw.edu

Abstract

Horizontal kinematic properties, such as vorticity, divergence, and lateral strain rate, are estimated from drifter clusters using three approaches. At submesoscale horizontal length scales O(110)km, kinematic properties become as large as planetary vorticity f, but challenging to observe because they evolve on short time scales O(hourstodays). By simulating surface drifters in a model flow field, we quantify the sources of uncertainty in the kinematic property calculations due to the deformation of cluster shape. Uncertainties arise primarily due to (i) violation of the linear estimation methods and (ii) aliasing of unresolved scales. Systematic uncertainties (iii) due to GPS errors, are secondary but can become as large as (i) and (ii) when aspect ratios are small. Ideal cluster parameters (number of drifters, length scale, and aspect ratio) are determined and error functions estimated empirically and theoretically. The most robust method—a two-dimensional, linear least squares fit—is applied to the first few days of a drifter dataset from the Bay of Bengal. Application of the length scale and aspect-ratio criteria minimizes errors (i) and (ii), and reduces the total number of clusters and so computational cost. The drifter-estimated kinematic properties map out a cyclonic mesoscale eddy with a surface, submesoscale fronts at its perimeter. Our analyses suggest methodological guidance for computing the two-dimensional kinematic properties in submesoscale flows, given the recently increasing quantity and quality of drifter observations, while also highlighting challenges and limitations.

Significance Statement

The purpose of this study is to provide insights and guidance for computing horizontal velocity gradients from clusters (i.e., three or more) of Lagrangian surface ocean drifters. The uncertainty in velocity gradient estimates depends strongly on the shape deformation of drifter clusters by the ocean currents. We propose criteria for drifter cluster length scales and aspect ratios to reduce uncertainties and develop ways of estimating the magnitude of the resulting errors. The findings are applied to a real ocean dataset from the Bay of Bengal.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sebastian Essink, sessink@uw.edu
Save
  • Beron-Vera, F. J., and J. H. LaCasce, 2016: Statistics of simulated and observed pair separations in the Gulf of Mexico. J. Phys. Oceanogr., 46, 2183–2199, https://doi.org/10.1175/JPO-D-15-0127.1.

    • Crossref
    • Export Citation
  • Berta, M., A. Griffa, T. M. Özgökmen, and A. C. Poje, 2016: Submesoscale evolution of surface drifter triads in the Gulf of Mexico. Geophys. Res. Lett., 43, 11 75111 759, https://doi.org/10.1002/2016GL070357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2013: Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). J. Phys. Oceanogr., 43, 2456–2474, https://doi.org/10.1175/JPO-D-13-063.1.

    • Crossref
    • Export Citation
  • Centurioni, L. R., 2018: Drifter technology and impacts for sea surface temperature, sea-level pressure, and ocean circulation studies. Observing the Oceans in Real Time, Springer Oceanography, Vol. 19, Springer, 3757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J., A. Bracco, R. Barkan, A. F. Shchepetkin, J. C. McWilliams, and J. M. Molemaker, 2017: Submesoscale dynamics in the northern Gulf of Mexico. Part III: Lagrangian implications. J. Phys. Oceanogr., 47, 2361–2376, https://doi.org/10.1175/JPO-D-17-0036.1.

    • Crossref
    • Export Citation
  • Dauhajre, D. P., and J. C. McWilliams, 2018: Diurnal evolution of submesoscale front and filament circulations. J. Phys. Oceanogr., 48, 2343–2361, https://doi.org/10.1175/JPO-D-18-0143.1.

    • Crossref
    • Export Citation
  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19 47719 498, https://doi.org/10.1029/2000JC900063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D. , and Coauthors, 2010: The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE, 98, 704716, https://doi.org/10.1109/jproc.2010.2043918.

    • Search Google Scholar
    • Export Citation
  • Essink, S., V. Hormann, L. R. Centurioni, and A. Mahadevan, 2019: Can we detect submesoscale motions in drifter pair dispersion? J. Phys. Oceanogr., 49, 22372254, https://doi.org/10.1175/JPO-D-18-0181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fahrbach, E., C. Brockmann, and J. Meincke, 1986: Horizontal mixing in the Atlantic Equatorial Undercurrent estimated from drifting buoy clusters. J. Geophys. Res., 91, 10 55710 565, https://doi.org/10.1029/JC091iC09p10557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haza, A. C., T. M. Özgökmen, A. Griffa, A. C. Poje, and M. P. Lelong, 2014: How does drifter position uncertainty affect ocean dispersion estimates? J. Atmos. Oceanic Technol., 31, 2809–2828, https://doi.org/10.1175/JTECH-D-14-00107.1.

    • Crossref
    • Export Citation
  • Hormann, V., L. R. Centurioni, and G. Reverdin, 2015: Evaluation of drifter salinities in the subtropical North Atlantic. J. Atmos. Oceanic Technol., 32, 185192, https://doi.org/10.1175/JTECH-D-14-00179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hormann, V., L. R. Centurioni, A. Mahadevan, S. Essink, E. A. D’Asaro, and B. P. Kumar, 2016: Variability of near-surface circulation and sea surface salinity observed from Lagrangian drifters in the northern Bay of Bengal during the waning 2015 southwest monsoon. Oceanography, 29 (2), 124–133, https://doi.org/10.5670/oceanog.2016.45.

    • Crossref
    • Export Citation
  • Horstmann, J., J. C. N. Borge, J. Seemann, R. Carrasco, and B. Lund, 2015: Wind, wave, and current retrieval utilizing X-band marine radars. Coastal Ocean Observing Systems, Elsevier, 281304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaeger, G. S., and A. Mahadevan, 2018: Submesoscale-selective compensation of fronts in a salinity-stratified ocean. Sci. Adv., 4, e1701504, https://doi.org/10.1126/sciadv.1701504.

    • Crossref
    • Export Citation
  • Johnson, L., C. M. Lee, E. A. D’Asaro, L. Thomas, and A. Shcherbina, 2020a: Restratification at a California Current upwelling front. Part I: Observations. J. Phys. Oceanogr., 50, 1455–1472, https://doi.org/10.1175/JPO-D-19-0203.1.

  • Johnson, L., C. M. Lee, E. A. D’Asaro, J. O. Wenegrat, and L. N. Thomas, 2020b: Restratification at a California Current upwelling front. Part II: Dynamics. J. Phys. Oceanogr., 50, 1473–1487, https://doi.org/10.1175/JPO-D-19-0204.1.

  • Karimova, S., and M. Gade, 2016: Improved statistics of sub-mesoscale eddies in the Baltic Sea retrieved from SAR imagery. Int. J. Remote Sens., 37, 23942414, https://doi.org/10.1080/01431161.2016.1145367.

    • Search Google Scholar
    • Export Citation
  • Kawai, H., 1985a: Scale dependence of divergence and vorticity of near-surface flows in the sea: Part 1. Measurements and calculations of area-averaged divergence and vorticity. J. Oceanogr. Soc. Japan, 41, 157166, https://doi.org/10.1007/BF02111115.

    • Search Google Scholar
    • Export Citation
  • Kawai, H., 1985b: Scale dependence of divergence and vorticity of near-surface flows in the sea: Part 2. Results and interpretation. J. Oceanogr. Soc. Japan, 41, 167175, https://doi.org/10.1007/BF02111116.

    • Search Google Scholar
    • Export Citation
  • Kirincich, A. R., 2016: The occurrence, drivers, and implications of submesoscale eddies on the Martha’s Vineyard inner shelf. J. Phys. Oceanogr., 46, 2645–2662, https://doi.org/10.1175/JPO-D-15-0191.1.

  • Kirincich, A. R., S. J. Lentz, J. T. Farrar, and N. K. Ganju, 2013: The spatial structure of tidal and mean circulation over the inner shelf south of Martha’s Vineyard, Massachusetts. J. Phys. Oceanogr., 43, 19401958, https://doi.org/10.1175/JPO-D-13-020.1.

    • Search Google Scholar
    • Export Citation
  • Kirwan, A. D., 1988: Notes on the cluster method for interpreting relative motions. J. Geophys. Res., 93, 9337–9339, https://doi.org/10.1029/JC093iC08p09337.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., M. G. Briscoe, and A. J. Williams, 1990: Interpreting shear and strain fine structure from a neutrally buoyant float. J. Geophys. Res., 95, 18 11118 125, https://doi.org/10.1029/JC095iC10p18111.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and C. Ohlmann, 2003: Relative dispersion at the surface of the Gulf of Mexico. J. Mar. Res., 61, 285312, https://doi.org/10.1357/002224003322201205.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., and P. Müller, 1992: Normal-mode decomposition of small-scale oceanic motions. J. Phys. Oceanogr., 22, 15831595, https://doi.org/10.1175/1520-0485(1992)022<1583:NMDOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lucas, A. J., and Coauthors, 2014: Mixing to monsoons: Air-sea interactions in the Bay of Bengal. Eos, Trans. Amer. Geophys. Union, 95, 269270, https://doi.org/10.1002/2014EO300001.

    • Search Google Scholar
    • Export Citation
  • Lund, B., H. C. Graber, and R. Romeiser, 2012: Wind retrieval from shipborne nautical X-band radar data. IEEE Trans. Geosci. Remote Sens., 50, 38003811, https://doi.org/10.1109/TGRS.2012.2186457.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256, https://doi.org/10.1016/j.ocemod.2006.05.006.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., J. Oliger, and R. Street, 1996a: A nonhydrostatic mesoscale ocean model. Part I: Well-posedness and scaling. J. Phys. Oceanogr., 26, 1868–1880, https://doi.org/10.1175/1520-0485(1996)026<1868:ANMOMP>2.0.CO;2.

  • Mahadevan, A., J. Oliger, and R. Street, 1996b: A nonhydrostatic mesoscale ocean model. Part II: Numerical implementation. J. Phys. Oceanogr., 26, 1881–1900, https://doi.org/10.1175/1520-0485(1996)026<1881:ANMOMP>2.0.CO;2.

  • Mahadevan, A., G. S. Jaeger, M. Freilich, M. M. Omand, E. L. Shroyer, and D. Sengupta, 2016: Freshwater in the Bay of Bengal: Its fate and role in air-sea heat exchange. Oceanography, 29 (2), 72–81, https://doi.org/10.5670/oceanog.2016.40.

  • Marmorino, G. O., B. Holt, M. J. Molemaker, P. M. DiGiacomo, and M. A. Sletten, 2010: Airborne synthetic aperture radar observations of “spiral eddy” slick patterns in the Southern California Bight. J. Geophys. Res., 115, C05010, https://doi.org/10.1029/2009JC005863.

    • Search Google Scholar
    • Export Citation
  • Marmorino, G. O., G. B. Smith, R. P. North, and B. Baschek, 2018: Application of airborne infrared remote sensing to the study of ocean submesoscale eddies. Front. Mech. Eng., 4, 10, https://doi.org/10.3389/fmech.2018.00010.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N., R. Lumpkin, and L. Centurioni, 2013: Ocean surface circulation. International Geophysics, Vol. 103, Elsevier, 283–304.

  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • Molinari, R., and A. D. Kirwan, 1975: Calculations of differential kinematic properties from Lagrangian observations in the western Caribbean Sea. J. Phys. Oceanogr., 5, 483491, https://doi.org/10.1175/1520-0485(1975)005<0483:CODKPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Müller, P., R.-C. Lien, and R. Williams, 1988: Estimates of potential vorticity at small scales in the ocean. J. Phys. Oceanogr., 18, 401416, https://doi.org/10.1175/1520-0485(1988)018<0401:EOPVAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., P.-M. Poulain, and L. R. Haury, 1989: Synoptic three-dimensional circulation in an onshore-flowing filament of the California Current. Deep-Sea Res., 36A, 385405, https://doi.org/10.1016/0198-0149(89)90043-5.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., A. S. Sybrandy, K. Bi, P. M. Poulain, and D. Bitterman, 1995: Measurements of the water-following capability of holey-sock and TRISTAR drifters. Deep-Sea Res. I, 42, 19511964, https://doi.org/10.1016/0967-0637(95)00076-3.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., M. J. Molemaker, B. Baschek, B. Holt, G. Marmorino, and G. Smith, 2017: Drifter observations of submesoscale flow kinematics in the coastal ocean. Geophys. Res. Lett., 44, 330–337, https://doi.org/10.1002/2016GL071537.

  • Okubo, A., and C. C. Ebbesmeyer, 1976: Determination of vorticity, divergence, and deformation rates from analysis of drogue observations. Deep-Sea Res. Oceanogr. Abstr., 23, 349352, https://doi.org/10.1016/0011-7471(76)90875-5.

    • Search Google Scholar
    • Export Citation
  • Oscroft, S., A. M. Sykulski, and J. J. Early, 2020: Separating mesoscale and submesoscale flows from clustered drifter trajectories. Fluids, 6, 14, https://doi.org/10.3390/fluids6010014.

    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., and P. P. Niiler, 1990: A Lagrangian description of motion in Northern California coastal transition filaments. J. Geophys. Res., 95, 18 095–18 109, https://doi.org/10.1029/JC095iC10p18095.

  • Pearson, J., B. Fox-Kemper, R. Barkan, J. Choi, A. Bracco, and J. C. McWilliams, 2019: Impacts of convergence on structure functions from surface drifters in the Gulf of Mexico. J. Phys. Oceanogr., 49, 675–690, https://doi.org/10.1175/JPO-D-18-0029.1.

  • Poje, A. C. , and Coauthors, 2014: Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl. Acad. Sci. USA, 111, 12 69312 698, https://doi.org/10.1073/pnas.1402452111.

    • Search Google Scholar
    • Export Citation
  • Poulain, P.-M., L. Centurioni, and T. Özgökmen, 2022: Comparing the currents measured by CARTHE, CODE and SVP drifters as a function of wind and wave conditions in the southwestern Mediterranean Sea. Sensors, 22, 353, https://doi.org/10.3390/s22010353.

    • Search Google Scholar
    • Export Citation
  • Ramachandran, S., and Coauthors, 2018: Submesoscale processes at shallow salinity fronts in the Bay of Bengal: Observations during the winter monsoon. J. Phys. Oceanogr., 48, 479–509, https://doi.org/10.1175/JPO-D-16-0283.1.

  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 1154–1158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

  • Righi, D. D., and P. T. Strub, 2001: The use of simulated drifters to estimate vorticity. J. Mar. Syst., 29, 125140, https://doi.org/10.1016/S0924-7963(01)00013-6.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., 2001: On the skewness of vorticity in the upper ocean. Geophys. Res. Lett., 28, 2045–2048, https://doi.org/10.1029/2000GL012265.

  • Ruiz, S., and Coauthors, 2019: Effects of oceanic mesoscale and submesoscale frontal processes on the vertical transport of phytoplankton. J. Geophys. Res. Oceans, 124, 59996014, https://doi.org/10.1029/2019JC015034.

    • Search Google Scholar
    • Export Citation
  • Saucier, W. J., 1953: Horizontal deformation in atmospheric motion. Eos, Trans. Amer. Geophys. Union, 34, 709–719, https://doi.org/10.1029/TR034i005p00709.

  • Saucier, W. J., 1955: Principles of Meteorological Analysis. University of Chicago Press, 438 pp.

  • Shcherbina, A. Y., E. A. D’Asaro, C. M. Lee, J. M. Klymak, M. J. Molemaker, and J. C. McWilliams, 2013: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 4706–4711, https://doi.org/10.1002/grl.50919.

  • Shroyer, E., and Coauthors, 2021: Bay of Bengal intraseasonal oscillations and the 2018 monsoon onset. Bull. Amer. Meteor. Soc., 102, E1936E1951, https://doi.org/10.1175/BAMS-D-20-0113.1.

    • Search Google Scholar
    • Export Citation
  • Spydell, M. S., F. Feddersen, and J. Macmahan, 2019: The effect of drifter GPS errors on estimates of submesoscale vorticity. J. Atmos. Oceanic Technol., 36, 21012119, https://doi.org/10.1175/JTECH-D-19-0108.1.

    • Search Google Scholar
    • Export Citation
  • Sun, D. , and Coauthors, 2020: Diurnal cycling of submesoscale dynamics: Lagrangian implications in drifter observations and model simulations of the northern Gulf of Mexico. J. Phys. Oceanogr., 50, 1605–1623, https://doi.org/10.1175/JPO-D-19-0241.1.

  • Swenson, M. S., P. P. Niiler, K. H. Brink, and M. R. Abbott, 1992: Drifter observations of a cold filament off Point Arena, California, in July 1988. J. Geophys. Res., 97, 3593–3610, https://doi.org/10.1029/91JC02736.

    • Search Google Scholar
    • Export Citation
  • Tarry, D. R., and Coauthors, 2021: Frontal convergence and vertical velocity measured by drifters in the Alboran Sea. J. Geophys. Res. Oceans, 126, e2020JC016614, https://doi.org/10.1029/2020JC016614.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38, https://doi.org/10.1029/177GM04.

  • Thushara, V., and P. N. Vinayachandran, 2014: Impact of diurnal forcing on intraseasonal sea surface temperature oscillations in the Bay of Bengal. J. Geophys. Res. Oceans, 119, 82218241, https://doi.org/10.1002/2013JC009746.

    • Search Google Scholar
    • Export Citation
  • Traon, P. Y. L., F. Nadal, and N. Ducet, 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15, 522–534, https://doi.org/10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2.

  • Weller, R., and Coauthors, 2016: Air-sea interaction in the Bay of Bengal. Oceanography, 29 (2), 2837, https://doi.org/10.5670/oceanog.2016.36.

    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., and M. J. McPhaden, 2016: Wind, waves, and fronts: Frictional effects in a generalized Ekman model. J. Phys. Oceanogr., 46, 371–394, https://doi.org/10.1175/JPO-D-15-0162.1.

  • Wijesekera, H. W., and Coauthors, 2016: ASIRI: An ocean–atmosphere initiative for Bay of Bengal. Bull. Amer. Meteor. Soc., 97, 18591884, https://doi.org/10.1175/BAMS-D-14-00197.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 567 0 0
Full Text Views 1852 1265 517
PDF Downloads 744 372 35