GPM Ground Validation at NASA Wallops Precipitation Research Facility

Charanjit S. Pabla aScience Systems and Applications, Inc., Lanham, Maryland
bWallops Flight Facility, NASA Goddard Space Flight Center, Wallops Island, Virginia

Search for other papers by Charanjit S. Pabla in
Current site
Google Scholar
PubMed
Close
,
David B. Wolff bWallops Flight Facility, NASA Goddard Space Flight Center, Wallops Island, Virginia

Search for other papers by David B. Wolff in
Current site
Google Scholar
PubMed
Close
,
David A. Marks aScience Systems and Applications, Inc., Lanham, Maryland
bWallops Flight Facility, NASA Goddard Space Flight Center, Wallops Island, Virginia

Search for other papers by David A. Marks in
Current site
Google Scholar
PubMed
Close
,
Stephanie M. Wingo cUniversity of Alabama in Huntsville, Huntsville, Alabama
dNASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Stephanie M. Wingo in
Current site
Google Scholar
PubMed
Close
, and
Jason L. Pippitt aScience Systems and Applications, Inc., Lanham, Maryland
eNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Jason L. Pippitt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Wallops Precipitation Research Facility (WPRF) at NASA Goddard Space Flight Center, Wallops Island, Virginia, has been established as a semipermanent supersite for the Global Precipitation Measurement (GPM) Ground Validation (GV) program. WPRF is home to research-quality precipitation instruments, including NASA’s S-band dual-polarimetric radar (NPOL), and a network of profiling radars, disdrometers, and rain gauges. This study investigates the statistical agreement of the GPM Core Observatory Dual-Frequency Precipitation Radar (DPR), combined DPR–GPM Microwave Imager (GMI) and GMI level II precipitation retrievals compared to WPRF ground observations from a 6-yr collection of satellite overpasses. Multisensor observations are integrated using the System for Integrating Multiplatform Data to Build the Atmospheric Column (SIMBA) software package. SIMBA ensures measurements recorded in a variety of formats are synthesized into a common reference frame for ease in comparison and analysis. Given that instantaneous satellite measurements are observed above ground level, this study investigates the possibility of a time lag between satellite and surface mass-weighted mean diameter (Dm), reflectivity (Z), and precipitation rate (R) observations. Results indicate that time lags vary up to 30 min after overpass time but are not consistent between cases. In addition, GPM Core Observatory Dm retrievals are within level I mission science requirements as compared to WPRF ground observations. Results also indicate GPM algorithms overestimate light rain (<1.0 mm h−1). Two very different stratiform rain vertical profiles show differing results when compared to ground reference data. A key finding of this study indicates multisensor DPR/GMI combined algorithms outperform single-sensor DPR algorithm.

Significance Statement

Satellites are beneficial for global precipitation surveillance because extensive ground instruments are lacking, especially over oceans. Ground validation studies are required to calibrate and improve precipitation algorithms from satellite sensors. The primary goal of this study is to quantify the differences between satellite raindrop size and rain-rate retrieval with ground-based observations. Rainfall-rate algorithms require assumptions about the mean raindrop size. Results indicate Global Precipitation Measurement (GPM)/satellite-based mean raindrop size is within acceptable error (±0.5 mm) with respect to ground measurements. In addition, GPM satellite measurements overestimate light rain (<1.0 mm h−1), which is important during the winter months and at high latitudes. Illuminating the challenges of GPM satellite-based precipitation estimation can guide algorithm developers to improve retrievals.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM): Science and Applications Special Collection.

Corresponding author: Charanjit S. Pabla, charanjit.s.pabla@nasa.gov

Abstract

The Wallops Precipitation Research Facility (WPRF) at NASA Goddard Space Flight Center, Wallops Island, Virginia, has been established as a semipermanent supersite for the Global Precipitation Measurement (GPM) Ground Validation (GV) program. WPRF is home to research-quality precipitation instruments, including NASA’s S-band dual-polarimetric radar (NPOL), and a network of profiling radars, disdrometers, and rain gauges. This study investigates the statistical agreement of the GPM Core Observatory Dual-Frequency Precipitation Radar (DPR), combined DPR–GPM Microwave Imager (GMI) and GMI level II precipitation retrievals compared to WPRF ground observations from a 6-yr collection of satellite overpasses. Multisensor observations are integrated using the System for Integrating Multiplatform Data to Build the Atmospheric Column (SIMBA) software package. SIMBA ensures measurements recorded in a variety of formats are synthesized into a common reference frame for ease in comparison and analysis. Given that instantaneous satellite measurements are observed above ground level, this study investigates the possibility of a time lag between satellite and surface mass-weighted mean diameter (Dm), reflectivity (Z), and precipitation rate (R) observations. Results indicate that time lags vary up to 30 min after overpass time but are not consistent between cases. In addition, GPM Core Observatory Dm retrievals are within level I mission science requirements as compared to WPRF ground observations. Results also indicate GPM algorithms overestimate light rain (<1.0 mm h−1). Two very different stratiform rain vertical profiles show differing results when compared to ground reference data. A key finding of this study indicates multisensor DPR/GMI combined algorithms outperform single-sensor DPR algorithm.

Significance Statement

Satellites are beneficial for global precipitation surveillance because extensive ground instruments are lacking, especially over oceans. Ground validation studies are required to calibrate and improve precipitation algorithms from satellite sensors. The primary goal of this study is to quantify the differences between satellite raindrop size and rain-rate retrieval with ground-based observations. Rainfall-rate algorithms require assumptions about the mean raindrop size. Results indicate Global Precipitation Measurement (GPM)/satellite-based mean raindrop size is within acceptable error (±0.5 mm) with respect to ground measurements. In addition, GPM satellite measurements overestimate light rain (<1.0 mm h−1), which is important during the winter months and at high latitudes. Illuminating the challenges of GPM satellite-based precipitation estimation can guide algorithm developers to improve retrievals.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM): Science and Applications Special Collection.

Corresponding author: Charanjit S. Pabla, charanjit.s.pabla@nasa.gov
Save
  • Adirosi, E., and Coauthors, 2021: Validation of GPM rainfall and drop size distribution products through disdrometers in Italy. Remote Sens., 13, 2081, https://doi.org/10.3390/rs13112081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amitai, E., C. L. Unkrich, D. C. Goodrich, E. Habib, and B. Thill, 2012: Assessing satellite-based rainfall estimates in semiarid watersheds using the USDA-ARS Walnut Gulch gauge network and TRMM PR. J. Hydrometeor., 13, 15791588, https://doi.org/10.1175/JHM-D-12-016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biswas, S., and V. Chandrasekar, 2018: Cross-validation of observations between the GPM Dual-Frequency Precipitation Radar and ground based dual-polarization radars. Remote Sens., 10, 1773, https://doi.org/10.3390/rs10111773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolen, S. M., and V. Chandrasekar, 2003: Methodology for aligning and comparing spaceborne radar and ground-based radar observations. J. Atmos. Oceanic Technol., 20, 647659, https://doi.org/10.1175/1520-0426(2003)20<647:MFAACS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V., M. Grecu, A. Protat, M. Thurai, and C. Klepp, 2021: Measurements of rainfall rate, drop size distribution, and variability at middle and higher latitudes: Application to the combined DPR-GMI algorithm. Remote Sens., 13, 2412, https://doi.org/10.3390/rs13122412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chase, R. J., 2022: DRpy. GitHub, accessed 31 March 2022, https://github.com/dopplerchase/DRpy.

  • Chase, R. J., S. W. Nesbitt, and G. M. McFarquhar, 2020: Evaluation of the microphysical assumptions within GPM-DPR using ground-based observations of rain and snow. Atmosphere, 11, 619, https://doi.org/10.3390/atmos11060619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., V. Chandrasekar, and R. Bechini, 2017: An improved dual-polarization radar rainfall algorithm (DROPS2.0): Application in NASA IFloodS field campaign. J. Hydrometeor., 18, 917937, https://doi.org/10.1175/JHM-D-16-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cifelli, R., V. Chandrasekar, S. Lim, P. Kennedy, Y. Wang, and S. Rutledge, 2011: A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. J. Atmos. Oceanic Technol., 28, 352364, https://doi.org/10.1175/2010JTECHA1488.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Adderio, L. P., G. Vulpiani, F. Porcu, A. Tokay, and R. Meneghini, 2018: Comparison of GPM Core Observatory and ground-based radar retrieval of mass-weighted mean raindrop diameter at midlatitude. J. Hydrometeor., 19, 15831598, https://doi.org/10.1175/JHM-D-18-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, B., S. A. Rutledge, S. Lim, V. Chandrasekar, and M. Thurai, 2013: A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset. J. Appl. Meteor. Climatol., 52, 21622186, https://doi.org/10.1175/JAMC-D-12-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, B., and D. B. Wolff, 2011: Satellite sampling and retrieval errors in regional monthly rain estimates from TMI, AMSR-E, SSM/I, AMSU-B, and the TRMM PR. J. Appl. Meteor. Climatol., 50, 9941023, https://doi.org/10.1175/2010JAMC2487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gatlin, P. N., M. Thurai, V. N. Bringi, W. Petersen, D. Wolff, A. Tokay, L. Carey, and M. Wingo, 2015: Searching for large raindrops: A global summary of two-dimensional video disdrometer observations. J. Appl. Meteor. Climatol., 54, 10691089, https://doi.org/10.1175/JAMC-D-14-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gatlin, P. N., W. A. Petersen, K. R. Knupp, and L. D. Carey, 2018: Observed response of the raindrop size distribution to changes in the melting layer. Atmosphere, 9, 319, https://doi.org/10.3390/atmos9080319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gatlin, P. N., W. A. Petersen, J. L. Pippitt, T. A. Berendes, D. B. Wolff, and A. Tokay, 2020: The GPM Validation Network and evaluation of satellite-based retrievals of the rain drop size distribution. Atmosphere, 11, 1010, https://doi.org/10.3390/atmos11091010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, S. J. Munchak, S. Ringerud, L. Liao, Z. S. Haddad, B. L. Kelley, and S. F. McLaughlin, 2016: The GPM combined algorithm. J. Atmos. Oceanic Technol., 33, 22252245, https://doi.org/10.1175/JTECH-D-16-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement (GPM) mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and Coauthors, 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 21672188, https://doi.org/10.1175/BAMS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2017: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). NASA Algorithm Theoretical Basis Doc., version 4.6, 28 pp., https://docserver.gesdisc.eosdis.nasa.gov/public/project/GPM/IMERG_ATBD_V4.6.pdf.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., 2020: Dual-Frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) mission’s Core Observatory. Satellite Precipitation Measurement, V. Levizzani et al., Eds., Springer, 183192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., S. Seto, R. Meneghini, N. Yoshida, J. Awaka, M. Le, V. Chandrasekar, and T. Kubota, 2017: GPM/DPR level-2 algorithm theoretical basis document. NASA Goddard Space Flight Center Algorithm Theoretical Basis Doc., 81 pp., https://arthurhou.pps.eosdis.nasa.gov/Documents/ATBD_DPR_201708_whole_1.pdf.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., M. L. Larsen, and D. B. Wolff, 2021: Improved estimates of the vertical structures of rain using single frequency Doppler radars. Atmosphere, 12, 699, https://doi.org/10.3390/atmos12060699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, M., and Coauthors, 2016: The Midlatitude Continental Convective Clouds Experiment (MC3E). Bull. Amer. Meteor. Soc., 97, 16671686, https://doi.org/10.1175/BAMS-D-14-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., and V. Levizzani, 2011: Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci., 15, 11091116, https://doi.org/10.5194/hess-15-1109-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., M.-L. Ou, J.-D. Park, K. R. Morris, M. R. Schwaller, and D. B. Wolff, 2014: Global Precipitation Measurement (GPM) Ground Validation (GV) prototype in the Korean Peninsula. J. Atmos. Oceanic Technol., 31, 19021921, https://doi.org/10.1175/JTECH-D-13-00193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602617, https://doi.org/10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., D. L. Randel, M. Kulie, N. Wang, R. Ferraro, S. J. Munchak, and V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, https://doi.org/10.1175/JTECH-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., and R. Meneghini, 2009: Changes in the TRMM version-5 and version-6 precipitation radar products due to orbit boost. J. Meteor. Soc. Japan, 87A, 93107, https://doi.org/10.2151/jmsj.87A.93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., and R. Meneghini, 2019: Physical evaluation of GPM DPR single- and dual-wavelength algorithms. J. Atmos. Oceanic Technol., 36, 883902, https://doi.org/10.1175/JTECH-D-18-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, and T. Iguchi, 2001: Comparisons of rain rate and reflectivity factor derived from the TRMM Precipitation Radar and the WSR-88D over the Melbourne, Florida, site. J. Atmos. Oceanic Technol., 18, 19591974, https://doi.org/10.1175/1520-0426(2001)018<1959:CORRAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, T. Iguchi, and A. Tokay, 2020: Characteristics of DSD bulk parameters: Implication for radar rain retrieval. Atmosphere, 11, 670, https://doi.org/10.3390/atmos11060670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maahn, M., C. Burgard, S. Crewell, I. V. Gorodetskaya, S. Kneifel, S. Lhermitte, K. Van Tricht, and N. P. M. vanLipzig, 2014: How does the spaceborne radar blind zone affect derived surface snowfall statistics in polar regions? J. Geophys. Res. Atmos., 119, 13 60413 620, https://doi.org/10.1002/2014JD022079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murali Krishna, U. V., S. K. Das, S. M. Deshpande, S. L. Doiphode, and G. Pandithurai, 2017: The assessment of Global Precipitation Measurement estimates over the Indian subcontinent. Earth Space Sci., 4, 540553, https://doi.org/10.1002/2017EA000285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, W. S., and Coauthors, 2018: GPM combined radar-radiometer precipitation. NASA Algorithm Theoretical Basis Doc., version 5, 68 pp., https://arthurhou.pps.eosdis.nasa.gov/Documents/Combined_algorithm_ATBD.V05.pdf.

    • Search Google Scholar
    • Export Citation
  • Pabla, C. S., D. B. Wolff, D. A. Marks, S. M. Wingo, J. L. Pippitt, and J. Wang, 2020: Performance of S-band ground-based radar precipitation rate retrieval algorithms over a dense gauge array. AMS Annual Meeting, Boston, MA, Amer. Meteor. Soc., 1053, https://ams.confex.com/ams/2020Annual/webprogram/Paper365776.html.

    • Search Google Scholar
    • Export Citation
  • Peters, G., B. Fischer, H. Münster, M. Clemens, and A. Wagner, 2005: Profiles of raindrop size distributions as retrieved by Microrain Radars. J. Appl. Meteor., 44, 19301949, https://doi.org/10.1175/JAM2316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and Coauthors, 2016: GPM level 1 science requirements: Science and performance viewed from the ground. Proc. Eighth Int. Precipitation Working Group Workshop, Bologna, Italy, IPWG, https://ntrs.nasa.gov/citations/20160012025.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., P. Kirstetter, J. Wang, D. B. Wolff, and A. Tokay, 2020: The Global Precipitation Measurement Ground Validation program. Satellite Precipitation Measurement, V. Levizzani et al., Eds., Advances in Global Change Research Series, Vol. 69, Springer-Nature, 471502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pippitt, J., D. B. Wolff, W. A. Petersen, and D. A. Marks, 2015: Data and operational processing for NASA’s GPM Ground Validation program. 37th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 111, https://ams.confex.com/ams/37RADAR/webprogram/Paper275627.html.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and A. P. Barros, 2010: Assessing satellite-based precipitation estimates in the southern Appalachian Mountains using rain gauges and TRMM PR. Adv. Geosci., 25, 143153, https://doi.org/10.5194/adgeo-25-143-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2000: Comparison of radar data from the TRMM satellite and Kwajalein oceanic validation site. J. Appl. Meteor., 39, 21512164, https://doi.org/10.1175/1520-0450(2001)040<2151:CORDFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwaller, M. R., and K. R. Morris, 2011: A Ground Validation network for the Global Precipitation Measurement mission. J. Atmos. Oceanic Technol., 28, 301319, https://doi.org/10.1175/2010JTECHA1403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seto, S., T. Iguchi, and T. Oki, 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement mission’s single/dual frequency radar measurements. IEEE Trans. Geosci. Remote Sens., 51, 52395251, https://doi.org/10.1109/TGRS.2012.2231686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seto, S., T. Shimozuma, T. Iguchi, and T. Kozu, 2016: Spatial and temporal variations of mass-weighted mean diameter estimated by GPM/DPR. 2016 IEEE Int. Geoscience and Remote Sensing Symp., Beijing, China, IEEE, 39383940, https://doi.org/10.1109/IGARSS.2016.7730023.

    • Search Google Scholar
    • Export Citation
  • Seto, S., T. Iguchi, R. Meneghini, J. Awaka, T. Kubota, T. Masaki, and N. Takahashi, 2021: The precipitation rate retrieval algorithms for the GPM Dual-Frequency Precipitation Radar. J. Meteor. Soc. Japan, 99, 205237, https://doi.org/10.2151/jmsj.2021-011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., C. Kummerow, W.-K. Tao, and R. F. Adler, 1996: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60, 1936, https://doi.org/10.1007/BF01029783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2015: Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEx): For measurement’s sake, let it snow. Bull. Amer. Meteor. Soc., 96, 17191741, https://doi.org/10.1175/BAMS-D-13-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., M. Kulie, L. Milani, S. J. Munchak, N. B. Wood, and V. Levizzani, 2019: Satellite estimation of falling snow: A Global Precipitation Measurement (GPM) Core Observatory perspective. J. Appl. Meteor. Climatol., 58, 14291448, https://doi.org/10.1175/JAMC-D-18-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., W. A. Petersen, and A. Tokay, 2016: A novel approach to identify sources of errors in IMERG for GPM Ground Validation. J. Hydrometeor., 17, 24772491, https://doi.org/10.1175/JHM-D-16-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., W. A. Petersen, G. Kirchengast, D. C. Goodrich, and D. B. Wolff, 2018: Evaluation of Global Precipitation Measurement rainfall estimates against three dense gauge networks. J. Hydrometeor., 19, 517532, https://doi.org/10.1175/JHM-D-17-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terao, T., and Coauthors, 2017: Direct validation of TRMM/PR near surface rain over the northeastern Indian subcontinent using a tipping bucket raingauge network. SOLA, 13, 157162, https://doi.org/10.2151/sola.2017-029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of normalized distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., and V. N. Bringi, 2018: Application of the generalized gamma model to represent the full rain drop size distribution spectra. J. Appl. Meteor. Climatol., 57, 11971210, https://doi.org/10.1175/jamc-d-17-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., P. Gatlin, V. N. Bringi, W. Petersen, P. Kennedy, B. Notaros, and L. Carey, 2017: Toward completing the raindrop size spectrum: Case studies involving 2D-video disdrometer, droplet spectrometer, and polarimetric radar measurements. J. Appl. Meteor. Climatol., 56, 877896, https://doi.org/10.1175/JAMC-D-16-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., V. N. Bringi, D. B. Wolff, D. A. Marks, and C. S. Pabla, 2020: Drop size distribution measurements in outer rainbands of Hurricane Dorian at the NASA Wallops Precipitation-Research Facility. Atmosphere, 11, 578, https://doi.org/10.3390/atmos11060578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., A. Kruger, and W. F. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40, 20832097, https://doi.org/10.1175/1520-0450(2001)040<2083:CODSDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., W. A. Petersen, P. Gatlin, and M. Wingo, 2013: Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Oceanic Technol., 30, 16721690, https://doi.org/10.1175/JTECH-D-12-00163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., D. B. Wolff, and W. A. Petersen, 2014: Evaluation of the new version of the laser-optical disdrometer, OTT Parsivel2. J. Atmos. Oceanic Technol., 31, 12761288, https://doi.org/10.1175/JTECH-D-13-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., L. P. D’Adderio, D. B. Wolff, and W. A. Petersen, 2016: A field study of pixel-scale variability of raindrop size distribution. J. Hydrometeor., 17, 18551868, https://doi.org/10.1175/JHM-D-15-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., L. P. D’Adderio, D. B. Wolff, and W. A. Petersen, 2020: Development and evaluation of the raindrop size distribution parameters for the NASA Global Precipitation Measurement mission Ground Validation program. J. Atmos. Oceanic Technol., 37, 115128, https://doi.org/10.1175/JTECH-D-18-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Utsumi, N., H. Kim, F. J. Turk, and Z. S. Haddad, 2019: Improving satellite-based subhourly surface rain estimates using vertical rain profile information. J. Hydrometeor., 20, 10151026, https://doi.org/10.1175/JHM-D-18-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and D. B. Wolff, 2012: Evaluation of TRMM rain estimates using ground measurements over central Florida. J. Appl. Meteor. Climatol., 51, 926940, https://doi.org/10.1175/JAMC-D-11-080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., B. Fisher, and D. Wolff, 2008: Estimating rain rates from tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 25, 4356, https://doi.org/10.1175/2007JTECHA895.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, R. A., A. Protat, S. T. Siems, H. A. Ramsay, V. Louf, M. J. Manton, and T. A. Kane, 2018: Calibrating ground-based radars against TRMM and GPM. J. Atmos. Oceanic Technol., 35, 323346, https://doi.org/10.1175/JTECH-D-17-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wingo, S. M., W. A. Petersen, P. N. Gatlin, C. S. Pabla, D. A. Marks, and D. B. Wolff, 2018: The System for Integrating Multiplatform Data to Build the Atmospheric Column (SIMBA) precipitation observation fusion framework. J. Atmos. Oceanic Technol., 35, 13531374, https://doi.org/10.1175/JTECH-D-17-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., and B. L. Fisher, 2008: Comparisons of instantaneous TRMM ground validation and satellite rain-rate estimates at different spatial scales. J. Appl. Meteor. Climatol., 47, 22152237, https://doi.org/10.1175/2008JAMC1875.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., D. A. Marks, E. Amitai, D. S. Silberstein, B. L. Fisher, A. Tokay, J. Wang, and J. L. Pippitt, 2005: Ground validation for the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Oceanic Technol., 22, 365380, https://doi.org/10.1175/JTECH1700.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., D. A. Marks, and W. A. Petersen, 2015: General application of the relative calibration adjustment (RCA) technique for monitoring and correcting radar reflectivity calibration. J. Atmos. Oceanic Technol., 32, 496506, https://doi.org/10.1175/JTECH-D-13-00185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawadzki, I. I., 1975: On radar-raingauge comparison. J. Appl. Meteor., 14, 14301436, https://doi.org/10.1175/1520-0450(1975)014<1430:ORRC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 427 0 0
Full Text Views 888 584 348
PDF Downloads 513 208 18