A Dual-Attention Mechanism Deep Learning Network for Mesoscale Eddy Detection by Mining Spatiotemporal Characteristics

Baixin Li aInstitute of Marine Sensing and Networking, Zhejiang University, Zhoushan, China

Search for other papers by Baixin Li in
Current site
Google Scholar
PubMed
Close
,
Huan Tang aInstitute of Marine Sensing and Networking, Zhejiang University, Zhoushan, China

Search for other papers by Huan Tang in
Current site
Google Scholar
PubMed
Close
,
Dongfang Ma aInstitute of Marine Sensing and Networking, Zhejiang University, Zhoushan, China
bHainan Institute, Zhejiang University, Sanya, China

Search for other papers by Dongfang Ma in
Current site
Google Scholar
PubMed
Close
, and
Jianmin Lin cKey Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province, Zhejiang University, Zhoushan, China

Search for other papers by Jianmin Lin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Mesoscale eddies are a mechanism for ocean energy transfer, and identifying them on a global scale provides a means of exploring ocean mass and energy exchange between ocean basins. There are many widely used model-driven methods for detecting mesoscale eddies; however, these methods are not fully robust or generalizable. This study applies a data-driven method and proposes a mesoscale detection network based on the extraction of eddy-related spatiotemporal information from multisource remote sensing data. Focusing on the northwest Pacific, the study first analyzes mesoscale eddy characteristics using a combination of gridded data for the absolute dynamic topography (ADT), sea surface temperature (SST), and absolute geostrophic velocity (UVG). Then, a deep learning network with a dual-attention mechanism and a convolutional long short-term memory module is proposed, which can deeply exploit spatiotemporal feature relevance while encoding and decoding information in the gridded data. Based on the analysis of mesoscale eddy characteristics, ADT and UVG gridded data are selected to be the inputs for the detection network. The experiments show that the accuracy of the proposed network reaches 93.38%, and the weighted mean dice coefficient reaches 0.8918, which is a better score than those achieved by some of the detection networks proposed in previous studies, including U-Net, SymmetricNet, and ResU-Net. Moreover, compared with the model-driven approach used to generate the ground-truth dataset, the network method proposed here demonstrates better performance in detecting mesoscale eddies at smaller scales, partially addressing the problem of ghost eddies.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 3 August 2022 to include funding information in the Acknowledgments that was omitted when originally published.

Corresponding author: Dongfang Ma, mdf2004@zju.edu.cn

Abstract

Mesoscale eddies are a mechanism for ocean energy transfer, and identifying them on a global scale provides a means of exploring ocean mass and energy exchange between ocean basins. There are many widely used model-driven methods for detecting mesoscale eddies; however, these methods are not fully robust or generalizable. This study applies a data-driven method and proposes a mesoscale detection network based on the extraction of eddy-related spatiotemporal information from multisource remote sensing data. Focusing on the northwest Pacific, the study first analyzes mesoscale eddy characteristics using a combination of gridded data for the absolute dynamic topography (ADT), sea surface temperature (SST), and absolute geostrophic velocity (UVG). Then, a deep learning network with a dual-attention mechanism and a convolutional long short-term memory module is proposed, which can deeply exploit spatiotemporal feature relevance while encoding and decoding information in the gridded data. Based on the analysis of mesoscale eddy characteristics, ADT and UVG gridded data are selected to be the inputs for the detection network. The experiments show that the accuracy of the proposed network reaches 93.38%, and the weighted mean dice coefficient reaches 0.8918, which is a better score than those achieved by some of the detection networks proposed in previous studies, including U-Net, SymmetricNet, and ResU-Net. Moreover, compared with the model-driven approach used to generate the ground-truth dataset, the network method proposed here demonstrates better performance in detecting mesoscale eddies at smaller scales, partially addressing the problem of ghost eddies.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 3 August 2022 to include funding information in the Acknowledgments that was omitted when originally published.

Corresponding author: Dongfang Ma, mdf2004@zju.edu.cn
Save
  • Albert, J., and P. K. Bhaskaran, 2020: Optimal grid resolution for the detection lead time of cyclogenesis in the north Indian Ocean. J. Atmos. Sol.-Terr. Phys., 204, 105289, https://doi.org/10.1016/j.jastp.2020.105289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashkezari, M. D., C. N. Hill, C. N. Follett, G. Forget, and M. J. Follows, 2016: Oceanic eddy detection and lifetime forecast using machine learning methods. Geophys. Res. Lett., 43, 12 23412 241, https://doi.org/10.1002/2016GL071269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castellani, M., 2006: A neural network approach for remote detection of marine eddies. OCEANS 2006—Asia Pacific, Singapore, IEEE, https://doi.org/10.1109/OCEANSAP.2006.4393861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castellani, M., 2007: Identification of eddies from sea surface temperature maps with neural networks. Int. J. Remote Sens., 27, 16011618, https://doi.org/10.1080/01431160500462170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, Y.-L., Y. Miyazawa, and X. Guo, 2015: Effects of the STCC eddies on the Kuroshio based on the 20-year JCOPE2 reanalysis results. Prog. Oceanogr., 135, 6476, https://doi.org/10.1016/j.pocean.2015.04.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., P. Gaube, M. G. Schlax, J. J. Early, and R. M. Samelson, 2011a: The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334, 328332, https://doi.org/10.1126/science.1208897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011b: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L.-C., Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, 2018: Encoder-decoder with atrous separable convolution for semantic image segmentation. Proc. 15th European Conf. on Computer Vision, Munich, Germany, ECCV, 801818, https://doi.org/10.1007/978-3-030-01234-2_49.

    • Search Google Scholar
    • Export Citation
  • Chen, S., B. Qiu, P. Klein, H. Sasaki, and Y. Sasai, 2014: Seasonal mesoscale and submesoscale eddy variability along the North Pacific Subtropical Countercurrent. J. Phys. Oceanogr., 44, 30793098, https://doi.org/10.1175/JPO-D-14-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. C., 2020: A complete formula of ocean surface absolute geostrophic current. Sci. Rep., 10, 1445, https://doi.org/10.1038/s41598-020-58458-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, C., F. Nencioli, Y. Liu, and J. C. McWilliams, 2011: An automated approach to detect oceanic eddies from satellite remotely sensed sea surface temperature data. IEEE Geosci. Remote Sens. Lett., 8, 10551059, https://doi.org/10.1109/LGRS.2011.2155029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., W. Song, Q. He, D. Huang, A. Liotta, and C. Su, 2019: Deep learning with multi-scale feature fusion in remote sensing for automatic oceanic eddy detection. Inf. Fusion, 49, 8999, https://doi.org/10.1016/j.inffus.2018.09.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faghmous, J. H., L. Styles, V. Mithal, S. Boriah, S. Liess, V. Kumar, F. Vikebø, and M. dos Santos Mesquita, 2012: EddyScan: A physically consistent ocean eddy monitoring application. 2012 Conf. on Intelligent Data Understanding, Boulder, CO, IEEE, 96103, https://doi.org/10.1109/CIDU.2012.6382189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faghmous, J. H., I. Frenger, Y. Yao, R. Warmka, A. Lindell, and V. Kumar, 2015: A daily global mesoscale ocean eddy dataset from satellite altimetry. Sci. Data, 2, 150028, https://doi.org/10.1038/sdata.2015.28.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Z., and G. Zhong, 2019: SymmetricNet: A mesoscale eddy detection method based on multivariate fusion data. arXiv, 1909.13411, https://doi.org/10.48550/arXiv.1909.13411.

    • Search Google Scholar
    • Export Citation
  • Fan, Z., G. Zhong, H. Wei, and H. Li, 2020: EDNet: A mesoscale eddy detection network with multi-modal data. 2020 Int. Joint Conf. on Neural Networks, Glasgow, United Kingdom, IEEE, https://doi.org/10.1109/IJCNN48605.2020.9206613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franz, K., R. Roscher, A. Milioto, S. Wenzel, and J. Kusche, 2018: Ocean eddy identification and tracking using neural networks. IEEE Int. Geoscience and Remote Sensing Symp., Valencia, Spain, IEEE, 68876890, https://doi.org/10.1109/IGARSS.2018.8519261.

    • Search Google Scholar
    • Export Citation
  • Gulakaram, V. S., N. K. Vissa, and P. K. Bhaskaran, 2018: Role of mesoscale eddies on atmospheric convection during summer monsoon season over the Bay of Bengal: A case study. J. Ocean Eng. Sci., 3, 343354, https://doi.org/10.1016/j.joes.2018.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausmann, U., A. Czaja, and J. Marshall, 2017: Mechanisms controlling the SST air-sea heat flux feedback and its dependence on spatial scale. Climate Dyn., 48, 12971307, https://doi.org/10.1007/s00382-016-3142-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, K., X. Zhang, S. Ren, and J. Sun, 2016: Deep residual learning for image recognition. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, IEEE, 770778, https://doi.org/10.1109/CVPR.2016.90.

    • Search Google Scholar
    • Export Citation
  • He, K., G. Gkioxari, P. Dollár, and R. Girshick, 2017: Mask R-CNN. Proc. IEEE Int. Conf. on Computer Vision, Venice, Italy, IEEE, 29612969, https://doi.org/10.1109/ICCV.2017.322.

    • Search Google Scholar
    • Export Citation
  • Hu, J., L. Shen, and G. Sun, 2018: Squeeze-and-excitation networks. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Salt Lake City, UT, IEEE, 71327141, https://doi.org/10.1109/CVPR.2018.00745.

    • Search Google Scholar
    • Export Citation
  • Huang, D., Y. Du, Q. He, W. Song, and A. Liotta, 2017: DeepEddy: A simple deep architecture for mesoscale oceanic eddy detection in SAR images. 2017 IEEE 14th Int. Conf. on Networking, Sensing and Control, Calabria, Italy, IEEE, 673678, https://doi.org/10.1109/ICNSC.2017.8000171.

    • Search Google Scholar
    • Export Citation
  • LeCun, Y., Y. Bengio, and G. Hinton, 2015: Deep learning. Nature, 521, 436444, https://doi.org/10.1038/nature14539.

  • Lguensat, R., M. Sun, R. Fablet, P. Tandeo, E. Mason, and G. Chen, 2018: EddyNet: A deep neural network for pixel-wise classification of oceanic eddies. 2018 IEEE Int. Geoscience and Remote Sensing Symp., Valencia, Spain, IEEE, 17641767, https://doi.org/10.1109/IGARSS.2018.8518411.

    • Search Google Scholar
    • Export Citation
  • Li, X., and Coauthors, 2020: Deep-learning-based information mining from ocean remote-sensing imagery. Natl. Sci. Rev., 7, 15841605, https://doi.org/10.1093/nsr/nwaa047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lian, Z., B. Sun, Z. Wei, Y. Wang, and X. Wang, 2019: Comparison of eight detection algorithms for the quantification and characterization of mesoscale eddies in the South China Sea. J. Atmos. Oceanic Technol., 36, 13611380, https://doi.org/10.1175/JTECH-D-18-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, T.-Y., P. Goyal, R. Girshick, K. He, and P. Dollár, 2017: Focal loss for dense object detection. Proc. IEEE Int. Conf. on Computer Vision, Venice, Italy, IEEE, 29802988, https://doi.org/10.1109/ICCV.2017.324.

    • Search Google Scholar
    • Export Citation
  • Lu, J., and K.-Y. Tong, 2019: Visualized insights into the optimization landscape of fully convolutional networks. arXiv, 1901.08556, https://doi.org/10.48550/arXiv.1901.08556.

    • Search Google Scholar
    • Export Citation
  • Mason, E., A. Pascual, and J. C. McWilliams, 2014: A new sea surface height–based code for oceanic mesoscale eddy tracking. J. Atmos. Oceanic Technol., 31, 11811188, https://doi.org/10.1175/JTECH-D-14-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuoka, D., F. Araki, Y. Inoue, and H. Sasaki, 2016: A new ap proach to ocean eddy detection, tracking, and event visualization-application to the northwest Pacific Ocean. Procedia Comput. Sci., 80, 16011611, https://doi.org/10.1016/j.procs.2016.05.491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGillicuddy, J. D. J., 2016: Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annu. Rev. Mar. Sci., 8, 125159, https://doi.org/10.1146/annurev-marine-010814-015606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moschos, E., O. Schwander, A. Stegner, and P. Gallinari, 2020a: Deep-SST-eddies: A deep learning framework to detect oceanic eddies in sea surface temperature images. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Barcelona, Spain, IEEE, 43074311, https://doi.org/10.1109/ICASSP40776.2020.9053909.

    • Search Google Scholar
    • Export Citation
  • Moschos, E., A. Stegner, O. Schwander, and P. Gallinari, 2020b: Classification of eddy sea surface temperature signatures under cloud coverage. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 13, 34373447, https://doi.org/10.1109/JSTARS.2020.3001830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nencioli, F., C. Dong, T. Dickey, L. Washburn, and J. C. McWilliams, 2010: A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Oceanic Technol., 27, 564579, https://doi.org/10.1175/2009JTECHO725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1970: Horizontal dispersion of floatable particles in vicinity of velocity singularities such as convergences. Deep-Sea Res., 17, 445454, https://doi.org/10.1016/0011-7471(70)90059-8.

    • Search Google Scholar
    • Export Citation
  • Portela, L., 1997: On the identification and classification of vortices. Ph.D. thesis, Stanford University, School of Mechanical Engineering, 173 pp.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010a: Interannual variability of the North Pacific Subtropical Countercurrent and its associated mesoscale eddy field. J. Phys. Oceanogr., 40, 213225, https://doi.org/10.1175/2009JPO4285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010b: Interannual-to-decadal variability in the bifurcation of the North Equatorial Current off the Philippines. J. Phys. Oceanogr., 40, 25252538, https://doi.org/10.1175/2010JPO4462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010c: Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep-Sea Res. II, 57, 10981110, https://doi.org/10.1016/j.dsr2.2008.11.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, P. L., 1983: Eddy kinetic energy in the North Atlantic from surface drifters. J. Geophys. Res., 88, 43554367, https://doi.org/10.1029/JC088iC07p04355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, A., J. Carton, C. Mooers, L. Walstad, E. Carter, M. Rienecker, J. Smith, and W. Leslie, 1984: A real-time dynamical forecast of ocean synoptic/mesoscale eddies. Nature, 309, 781783, https://doi.org/10.1038/309781a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ronneberger, O., P. Fischer, and T. Brox, 2015: U-Net: Convolutional networks for biomedical image segmentation. 18th Int. Conf. on Medical Image Computing and Computer Assisted Intervention, Munich, Germany, TUM, 234241, https://doi.org/10.1007/978-3-319-24574-4_28.

    • Search Google Scholar
    • Export Citation
  • Sadarjoen, I. A., F. H. Post, B. Ma, D. C. Banks, and H.-G. Pagendarm, 1998: Selective visualization of vortices in hydrodynamic flows. Proc. Visualization ’98, Research Triangle Park, NC, IEEE, 419422, https://doi.org/10.1109/VISUAL.1998.745333.

    • Search Google Scholar
    • Export Citation
  • Santana, O. J., D. Hernández-Sosa, J. Martz, and R. N. Smith, 2020: Neural network training for the detection and classification of oceanic mesoscale eddies. Remote Sens., 12, 2625, https://doi.org/10.3390/rs12162625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schütte, F., P. Brandt, and J. Karstensen, 2016: Occurrence and characteristics of mesoscale eddies in the tropical northeastern Atlantic Ocean. Ocean Sci., 12, 663685, https://doi.org/10.5194/os-12-663-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, W., C. Dong, W. Tan, and Y. He, 2019: Statistical characteristics of cyclonic warm-core eddies and anticyclonic cold-core eddies in the North Pacific based on remote sensing data. Remote Sens., 11, 208, https://doi.org/10.3390/rs11020208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., D. Liu, W. Zhang, J. Li, and B. Wang, 2020: Characterizing the capability of mesoscale eddies to carry drifters in the northwest Pacific. J. Oceanol. Limnol., 38, 17111728, https://doi.org/10.1007/s00343-019-9149-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, J., 1991: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48, 273294, https://doi.org/10.1016/0167-2789(91)90088-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., L. Magaard, and J. Hager, 1976: Eddy energy in the oceans. J. Geophys. Res., 81, 26412646, https://doi.org/10.1029/JC081i015p02641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, G., and Coauthors, 2019: Oceanic eddy identification using an AI scheme. Remote Sens., 11, 1349, https://doi.org/10.3390/rs11111349.

  • Yang, G., F. Wang, Y. Li, and P. Lin, 2013: Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three-dimensional structures. J. Geophys. Res. Oceans, 118, 19061925, https://doi.org/10.1002/jgrc.20164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., J. Shi, X. Qi, X. Wang, and J. Jia, 2017: Pyramid scene parsing network. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, HI, IEEE, 28812890, https://doi.org/10.1109/CVPR.2017.660.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 575 0 0
Full Text Views 1119 843 455
PDF Downloads 565 260 13