Internal Wave and Turbulence Observations with Very High-Resolution Temperature Sensors along the Cabauw Mast

Hans van Haren aRoyal Netherlands Institute for Sea Research (NIOZ), Den Burg, Netherlands

Search for other papers by Hans van Haren in
Current site
Google Scholar
PubMed
Close
and
Fred C. Bosveld bRoyal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

Search for other papers by Fred C. Bosveld in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Knowledge about the characteristics of the atmospheric boundary layer is vital for the understanding of redistribution of air and suspended contents that are particularly driven by turbulent motions. Despite many modeling studies, detailed observations are still demanded of the development of turbulent exchange under stable and unstable conditions. In this paper, we present an attempt to observationally describe atmospheric internal waves and their associated turbulent eddies in detail, under varying stable conditions. Therefore, we mounted 198 high-resolution temperature (T) sensors with 1-m spacing on a 200-m-long cable. The instrumented cable was attached along the 213-m-tall meteorological mast of Cabauw, Netherlands, during late summer 2017. The mast has standard meteorological equipment at extendable booms at six levels in height. A sonic anemometer is at 60 m above ground. The T sensors have a time constant in air of τa ≈ 3 s and an apparent drift about 0.1°C month−1. Also due to radiation effects, short-term measurement instability is 0.05°C h−1 during nighttime and 0.5°C h−1 during daytime. These T-sensor characteristics hamper quantitative atmospheric turbulence research, due to a relatively narrow inertial subrange of maximum one order of magnitude. Nevertheless, height–time images from two contrasting nights show internal waves up to the buoyancy period of about 300 s, and shear and convective deformation of the stratification over the entire 197-m range of observations, supported by nocturnal marginally stable stratification. Moderate winds lead to 20-m-tall convection across weaker stratification, weak winds to episodic <10-m-tall shear instability across larger stratification.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hans van Haren, hans.van.haren@nioz.nl

Abstract

Knowledge about the characteristics of the atmospheric boundary layer is vital for the understanding of redistribution of air and suspended contents that are particularly driven by turbulent motions. Despite many modeling studies, detailed observations are still demanded of the development of turbulent exchange under stable and unstable conditions. In this paper, we present an attempt to observationally describe atmospheric internal waves and their associated turbulent eddies in detail, under varying stable conditions. Therefore, we mounted 198 high-resolution temperature (T) sensors with 1-m spacing on a 200-m-long cable. The instrumented cable was attached along the 213-m-tall meteorological mast of Cabauw, Netherlands, during late summer 2017. The mast has standard meteorological equipment at extendable booms at six levels in height. A sonic anemometer is at 60 m above ground. The T sensors have a time constant in air of τa ≈ 3 s and an apparent drift about 0.1°C month−1. Also due to radiation effects, short-term measurement instability is 0.05°C h−1 during nighttime and 0.5°C h−1 during daytime. These T-sensor characteristics hamper quantitative atmospheric turbulence research, due to a relatively narrow inertial subrange of maximum one order of magnitude. Nevertheless, height–time images from two contrasting nights show internal waves up to the buoyancy period of about 300 s, and shear and convective deformation of the stratification over the entire 197-m range of observations, supported by nocturnal marginally stable stratification. Moderate winds lead to 20-m-tall convection across weaker stratification, weak winds to episodic <10-m-tall shear instability across larger stratification.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hans van Haren, hans.van.haren@nioz.nl
Save
  • Abarbanel, H. D. I., D. D. Holm, J. E. Marsden, and T. Ratiu, 1984: Richardson number criterion for the nonlinear stability of three-dimensional stratified flow. Phys. Rev. Lett., 52, 23522355, https://doi.org/10.1103/PhysRevLett.52.2352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akylas, T. R., 2010: Gravity-wave dynamics in the atmosphere. Massachusetts Institute of Technology Rep., 79 pp.

  • Alexander, S. P., T. Tsuda, and J. Furumoto, 2007: Effects of atmospheric stability on wave and energy propagation in the troposphere. J. Atmos. Oceanic Technol., 24, 602615, https://doi.org/10.1175/JTECH2046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., and B. B. Hicks, 2002: Comments on “Critical test of the validity of Monin–Obukhov similarity during convective conditions.” J. Atmos. Sci., 59, 26052607, https://doi.org/10.1175/1520-0469(2002)059<2605:COCTOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolgiano, R., 1959: Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res., 64, 22262229, https://doi.org/10.1029/JZ064i012p02226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosveld, F. C., 2020: The Cabauw in-situ observational program 2000–present: Instruments, calibrations and set-up. KNMI Tech. Rep. TR-384, 79 pp.

    • Search Google Scholar
    • Export Citation
  • Bosveld, F. C., P. Baas, A. C. M. Beljaars, A. A. M. Holtslag, J. Vilà-Guerau de Arellano, and B. J. H. van de Wiel, 2020: Fifty years of atmospheric boundary-layer research at Cabauw serving weather, air quality and climate. Bound.-Layer Meteor., 177, 583612, https://doi.org/10.1007/s10546-020-00541-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burns, S. P., and J. Sun, 2000: Thermocouple temperature measurements from the CASES-99 main mast. Preprints, 14th Symp. on Boundary Layer and Turbulence, Snowmass, CO, Amer. Meteor. Soc., 358361.

    • Search Google Scholar
    • Export Citation
  • Carpenter, J. R., E. W. Tedford, E. Heifetz, and G. A. Lawrence, 2011: Instability in stratified shear flow: Review of a physical interpretation based on interacting waves. Appl. Mech. Rev., 64, 060801, https://doi.org/10.1115/1.4007909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chimonas, G., 1999: Steps, waves and turbulence in the stably stratified planetary boundary layer. Bound.-Layer Meteor., 90, 397421, https://doi.org/10.1023/A:1001709029773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conrick, R., C. F. Mass, and Q. Zhong, 2018: Simulated Kelvin–Helmholtz waves over terrain and their microphysical implications. J. Atmos. Sci., 75, 27872800, https://doi.org/10.1175/JAS-D-18-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Baas, A. F., and A. G. M. Driedonks, 1985: Internal gravity waves in a stably stratified boundary layer. Bound.-Layer Meteor., 31, 303323, https://doi.org/10.1007/BF00120898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Bruin, H. A. R., I. F. Trigo, F. C. Bosveld, and J. F. Meirink, 2016: A thermodynamically based model for actual evapotranspiration of an extensive grass field close to FAO reference, suitable for remote sensing application. J. Hydrometeor., 17, 13731382, https://doi.org/10.1175/JHM-D-15-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Jong, S. A. P., J. D. Slingerland, and N. C. van de Giesen, 2015: Fiber optic distributed temperature sensing for the determination of air temperature. Atmos. Meas. Tech., 8, 335339, https://doi.org/10.5194/amt-8-335-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., 1991: Observation of a quasi-periodic oscillation due to gravity waves in a shallow radiation fog. Quart. J. Roy. Meteor. Soc., 117, 12071224, https://doi.org/10.1002/qj.49711750205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., 1982: Observations of internal wave reflection off sloping bottoms. J. Geophys. Res., 87, 525538, https://doi.org/10.1029/JC087iC01p00525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., 1988: Kinetic energy transfer between internal gravity waves and turbulence. J. Atmos. Sci., 45, 486505, https://doi.org/10.1175/1520-0469(1988)045<0486:KETBIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., 1999: A note on wave-turbulence interaction and the possibility of scaling the very stable boundary layer. Bound.-Layer Meteor., 90, 529539, https://doi.org/10.1023/A:1001756912935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., F. Einaudi, and D. Fua, 1984: The interaction between an internal gravity wave and turbulence in the stably-stratified nocturnal boundary layer. J. Atmos. Sci., 41, 24092436, https://doi.org/10.1175/1520-0469(1984)041<2409:TIBAIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foken, T., 2006: 50 years of the Monin-Obukhov similarity theory. Bound.-Layer Meteor., 119, 431447, https://doi.org/10.1007/s10546-006-9048-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., Y. Meillier, and M. L. Jensen, 2008: Measurements of boundary layer profiles with in situ sensors and Doppler lidar. J. Atmos. Oceanic Technol., 25, 13281340, https://doi.org/10.1175/2007JTECHA963.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freire, L. S., M. Chamecki, E. Bou-Zeid, and N. L. Dias, 2019: Critical flux Richardson number for Kolmogorov turbulence enabled by TKE transport. Quart. J. Roy. Meteor. Soc., 145, 15511558, https://doi.org/10.1002/qj.3511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., C. Nappo, D. M. Riggin, B. B. Balsley, W. E. Eichinger, and R. K. Newsom, 2003: Analysis of ducted motions in the stable nocturnal boundary layer during CASES-99. J. Atmos. Sci., 60, 24502472, https://doi.org/10.1175/1520-0469(2003)060<2450:AODMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, A. M., K. Lapo, A. Freundorfer, T. Linhardt, and C. K. Thomas, 2021: Revealing the morning transition in the mountain boundary layer using fiber-optic distributed temperature sensing. Geophys. Res. Lett., 48, e2020GL092238, https://doi.org/10.1029/2020GL092238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1972: Space-time scales of internal waves. Geophys. Fluid Dyn., 3, 225264, https://doi.org/10.1080/03091927208236082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerkema, T., L. R. M. Maas, and H. van Haren, 2013: A note on the role of mean flows in Doppler-shifted frequencies. J. Phys. Oceanogr., 43, 432441, https://doi.org/10.1175/JPO-D-12-090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., M. L. Salby, and F. Sassi, 2002: Distribution and influence of convection in the tropical tropopause region. J. Geophys. Res., 107, 4080, https://doi.org/10.1029/2001JD001048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groen, P., 1948: Contribution to the theory of internal waves. KNMI Meded. Verh., B11, 123.

  • Holtslag, A. A. M., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, https://doi.org/10.1175/BAMS-D-11-00187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howard, L. N., 1961: Note on a paper of John W. Miles. J. Fluid Mech., 10, 509512, https://doi.org/10.1017/S0022112061000317.

  • Keller, C. A., H. Huwald, M. K. Vollmer, A. Wenger, M. Hill, M. B. Parlange, and S. Reimann, 2011: Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height. Atmos. Meas. Tech., 4, 143149, https://doi.org/10.5194/amt-4-143-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • La, I., S. S. Yum, I. Gultepe, J. M. Yeom, J. I. Song, and J. W. Cha, 2020: Influence of quasi-periodic oscillation of atmospheric variables on radiation fog over a mountainous region of Korea. Atmosphere, 11, 230, https://doi.org/10.3390/atmos11030230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeBlond, P. H., and L. A. Mysak, 1978: Waves in the Ocean. Elsevier, 602 pp.

  • Mahrt, L., 2014: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech., 46, 2345, https://doi.org/10.1146/annurev-fluid-010313-141354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., L. Pfister, and C. K. Thomas, 2019: Small-scale variability in the nocturnal boundary layer. Bound.-Layer Meteor., 174, 8198, https://doi.org/10.1007/s10546-019-00476-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496508, https://doi.org/10.1017/S0022112061000305.

  • Nappo, C. J., 2002: An Introduction to Atmospheric Gravity Waves. 2nd ed. International Geophysics Series, Vol. 102, Academic Press, 385 pp.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 1984: The structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41, 22022216, https://doi.org/10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawar, S. S., and J. H. Arakeri, 2016: Kinetic energy and scalar spectra in high Rayleigh number axially homogeneous buoyancy driven turbulence. Phys. Fluids, 28, 065103, https://doi.org/10.1063/1.4953858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltola, O., and Coauthors, 2021: Suitability of fiber-optic distributed temperature sensing to reveal mixing processes and higher-order moments at the forest-air interface. Atmos. Meas. Tech., 14, 24092427, https://doi.org/10.5194/amt-14-2409-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rannik, Ü., O. Peltola, and I. Mammarella, 2016: Random uncertainties of flux measurements by the eddy covariance technique. Atmos. Meas. Tech., 9, 51635181, https://doi.org/10.5194/amt-9-5163-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenk, W. E., 1974: Cloud top height variability of strong convective cells. J. Appl. Meteor., 13, 917922, https://doi.org/10.1175/1520-0450(1974)013<0917:CTHVOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmund, A., L. Pfister, C. Sayde, and C. K. Thomas, 2017: Quantitative analysis of the radiation error for aerial coiled-fiber-optic distributed temperature sensing deployments using reinforcing fabric as support structure. Atmos. Meas. Tech., 10, 21492162, https://doi.org/10.5194/amt-10-2149-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. N. Moum, 2012: Ocean mixing by Kelvin-Helmholtz instability. Oceanography, 25 (2), 140149, https://doi.org/10.5670/oceanog.2012.49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., and A. Czerwinska, 2013: Statistics f turbulence in the stable boundary layer affected by gravity waves. Bound.-Layer Meteor., 148, 7391, https://doi.org/10.1007/s10546-013-9809-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steeneveld, G.-J., C. J. Nappo, and A. A. M. Holtslag, 2009: Estimation of orographically induced wave drag in the stable boundary layer during the CASES-99 experimental campaign. Acta Geophys., 57, 857881, https://doi.org/10.2478/s11600-009-0028-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351, https://doi.org/10.1175/JAS-D-11-082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2015: Review of wave-turbulence interactions in the stable atmospheric boundary layer. Rev. Geophys., 53, 956993, https://doi.org/10.1002/2015RG000487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, 316 pp.

  • Thorpe, S. A., 1987: Transitional phenomena and the development of turbulence in stratified fluids: A review. J. Geophys. Res., 92, 52315248, https://doi.org/10.1029/JC092iC05p05231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuda, T., T. E. VanZandt, M. Mizumoto, S. Kato, and S. Fukao, 1991: Spectral analysis of temperature and Brunt-Väisälä frequency fluctuations observed by radiosondes. J. Geophys. Res., 96, 17 26517 278, https://doi.org/10.1029/91JD01944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Haren, H., 2018: Philosophy and application of high-resolution temperature sensors for stratified waters. Sensors, 18, 3184, https://doi.org/10.3390/s18103184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Haren, H., and L. Gostiaux, 2009: High-resolution open-ocean temperature spectra. J. Geophys. Res., 114, C05005, https://doi.org/10.1029/2008JC004967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Haren, H., and L. Gostiaux, 2010: A deep-ocean Kelvin-Helmholtz billow train. Geophys. Res. Lett., 37, L03605, https://doi.org/10.1029/2009GL041890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Haren, H., and L. Gostiaux, 2012: Detailed internal wave mixing observed above a deep-ocean slope. J. Mar. Res., 70, 173197, https://doi.org/10.1357/002224012800502363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Haren, H., L. Maas, J. T. F. Zimmerman, H. Ridderinkhof, and H. Malschaert, 1999: Strong inertial currents and marginal internal wave stability in the central North Sea. Geophys. Res. Lett., 26, 29932996, https://doi.org/10.1029/1999GL002352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Haren, H., M. Laan, D.-J. Buijsman, L. Gostiaux, M. G. Smit, and E. Keijzer, 2009: NIOZ3: Independent temperature sensors sampling yearlong data at a rate of 1 Hz. IEEE J. Oceanic Eng., 34, 315322, https://doi.org/10.1109/JOE.2009.2021237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viana, S., E. Terradellas, and C. Yagüe, 2010: Analysis of gravity waves generated at the top of a drainage flow. J. Atmos. Sci., 67, 39493966, https://doi.org/10.1175/2010JAS3508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warhaft, Z., 2000: Passive scalars in turbulent flows. Annu. Rev. Fluid Mech., 32, 203240, https://doi.org/10.1146/annurev.fluid.32.1.203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, I. Rogachevskill, I. Esau, T. Mauritsen, and M. M. Miles, 2008: Turbulence energetics in stably stratified geophysical flows: Strong and weak mixing regimes. Quart. J. Roy. Meteor. Soc., 134, 793799, https://doi.org/10.1002/qj.264.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 241 0 0
Full Text Views 604 464 336
PDF Downloads 191 65 3