• Cadeddu, M. P., G. E. Peckham, and C. Gaffard, 2002: The vertical resolution of ground-based microwave radiometers analyzed through a multiresolution wavelet technique. IEEE Trans. Geosci. Remote Sens., 40, 531540, https://doi.org/10.1109/TGRS.2002.1000313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, https://doi.org/10.1016/j.jqsrt.2004.05.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., G. S. Romine, D. D. Turner, and R. D. Torn, 2019: Impacts of targeted AERI and Doppler lidar wind retrievals on short-term forecasts of the initiation and early evolution of thunderstorms. Mon. Wea. Rev., 147, 11491170, https://doi.org/10.1175/MWR-D-18-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crewell, S., and U. Löhnert, 2007: Accuracy of boundary layer temperature profiles retrieved with multifrequency multiangle microwave radiometry. IEEE Trans. Geosci. Remote Sens., 45, 21952201, https://doi.org/10.1109/TGRS.2006.888434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degelia, S. K., X. Wang, D. J. Stensrud, and D. D. Turner, 2020: Systematic evaluation of the impact of assimilating a network of ground-based remote sensing profilers for forecasts of nocturnal convection initiation during PECAN. Mon. Wea. Rev., 148, 47034728, https://doi.org/10.1175/MWR-D-20-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dimitrova, R., Z. Silber, T. Zsedrovits, C. M. Hocut, L. S. Leo, S. D. Sabatino, and H. J. S. Fernando, 2016: Assessment of planetary boundary-layer schemes in the Weather Research and Forecasting Mesoscale Model using MATERHORN field data. Bound.-Layer Meteor., 159, 589609, https://doi.org/10.1007/s10546-015-0095-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebell, K., E. Orlandi, A. Hünerbein, U. Löhnert, and S. Crewell, 2013: Combining ground-based with satellite-based measurements in the atmospheric state retrieval: Assessment of the information content. J. Geophys. Res. Atmos., 118, 69406956, https://doi.org/10.1002/jgrd.50548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esau, I., and S. Zilitinkevich, 2010: On the role of the planetary boundary layer depth in the climate system. Adv. Sci. Res., 4, 6369, https://doi.org/10.5194/asr-4-63-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., W. L. Smith, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, and H. B. Howell, 1998: Meteorological applications of temperature and water vapor retrievals from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor., 37, 857875, https://doi.org/10.1175/1520-0450(1998)037<0857:MAOTAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gero, P. J., and D. D. Turner, 2011: Long-term trends in downwelling spectral infrared radiance over the U.S. Southern Great Plains. J. Climate, 24, 48314843, https://doi.org/10.1175/2011JCLI4210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grasmick, C., B. Geerts, D. D. Turner, Z. Wang, and T. M. Weckwerth, 2018: The relation between nocturnal MCS evolution and its outflow boundaries in the stable boundary layer: An observational study of the 15 July 2015 MCS in PECAN. Mon. Wea. Rev., 146, 32033226, https://doi.org/10.1175/MWR-D-18-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haghi, K. R., and Coauthors, 2019: Bore-ing into nocturnal convection. Bull. Amer. Meteor. Soc., 100, 11031121, https://doi.org/10.1175/BAMS-D-17-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, K. R. Haghi, and D. B. Parsons, 2018: Evaluation of forecasts of a convectively generated bore using an intensively observed case study from PECAN. Mon. Wea. Rev., 146, 30973122, https://doi.org/10.1175/MWR-D-18-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004a: Atmospheric Emitted Radiance Interferometer. Part I: Instrument design. J. Atmos. Oceanic Technol., 21, 17631776, https://doi.org/10.1175/JTECH-1662.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004b: Atmospheric Emitted Radiance Interferometer. Part II: Instrument performance. J. Atmos. Oceanic Technol., 21, 17771789, https://doi.org/10.1175/JTECH-1663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lechevallier, L., S. Vasilchenko, R. Grilli, D. Mondelain, D. Romanini, and A. Campargue, 2018: The water vapour self-continuum absorption in the infrared atmospheric windows: New laser measurements near 3.3 and 2.0 μm. Atmos. Meas. Tech., 11, 21592171, https://doi.org/10.5194/amt-11-2159-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, W. E., T. J. Wagner, J. A. Otkin, and T. A. Jones, 2020: Impact of AERI temperature and moisture retrievals on the simulation of a central Plains severe convective weather event. Atmosphere, 11, 729, https://doi.org/10.3390/atmos11070729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loveless, D., T. J. Wagner, D. D. Turner, S. A. Ackerman, and W. F. Feltz, 2019: A composite perspective on bore passages during the PECAN campaign. Mon. Wea. Rev., 147, 13951413, https://doi.org/10.1175/MWR-D-18-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., T. P. Ackerman, P. Minnis, and D. F. Young, 1998: Cirrus layer microphysical properties derived from surface-based millimeter radar and infrared interferometer data. J. Geophys. Res., 103, 23 20723 216, https://doi.org/10.1029/98JD02117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masiello, G., C. Serio, and P. Antonelli, 2012: Inversion for atmospheric thermodynamic parameters of IASI data in the principal components space. Quart. J. Roy. Meteor. Soc., 138, 103117, https://doi.org/10.1002/qj.909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massaro, G., I. Stiperski, B. Pospichal, and M. W. Rotach, 2015: Accuracy of retrieving temperature and humidity profiles by ground-based microwave radiometry in truly complex terrain. Atmos. Meas. Tech., 8, 33553367, https://doi.org/10.5194/amt-8-3355-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthias, V., and J. Bösenberg, 2002: Aerosol climatology for the planetary boundary layer derived from regular lidar measurements. Atmos. Res., 63, 221245, https://doi.org/10.1016/S0169-8095(02)00043-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, Y., and S. Liu, 2019: Linkages between aerosol pollution and planetary boundary layer structure in China. Sci. Total Environ., 650, 288296, https://doi.org/10.1016/j.scitotenv.2018.09.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnett, P. J., R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, 2001: The Marine-Atmospheric Emitted Radiance Interferometer: A high-accuracy, seagoing infrared spectroradiometer. J. Atmos. Oceanic Technol., 18, 9941013, https://doi.org/10.1175/1520-0426(2001)018<0994:TMAERI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, D., B. Geerts, Z. Wang, M. Deng, and C. Grasmick, 2017: Evolution and vertical structure of an undular bore observed on 20 June 2015 during PECAN. Mon. Wea. Rev., 145, 37753794, https://doi.org/10.1175/MWR-D-16-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Academies of Sciences, Engineering, and Medicine, 2018: Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space. National Academies Press, 716 pp.

    • Search Google Scholar
    • Export Citation
  • NRC, 2009: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. National Academies Press, 234 pp.

  • Pan, H.-L., and L. Mahrt, 1987: Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteor., 38, 185202, https://doi.org/10.1007/BF00121563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., and A. Xiu, 1995: Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models. J. Appl. Meteor., 34, 1632, https://doi.org/10.1175/1520-0450-34.1.16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. Series on Atmospheric, Oceanic and Planetary Physics, Vol. 2, World Scientific, 238 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothman, L. S., and I. E. Gordon, 2013: The HITRAN molecular database. AIP Conf. Proc., 1545, 223231, https://doi.org/10.1063/1.4815858.

  • Seo, J., H. Choi, and Y. Oh, 2022: Potential of AOD retrieval using Atmospheric Emitted Radiance Interferometer (AERI). Remote Sens., 14, 407, https://doi.org/10.3390/rs14020407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. L., W. F. Feltz, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, and H. B. Howell, 1999: The retrieval of planetary boundary layer structure using ground-based infrared spectral radiance measurements. J. Atmos. Oceanic Technol., 16, 323333, https://doi.org/10.1175/1520-0426(1999)016<0323:TROPBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toms, B. A., J. M. Tomaszewski, D. D. Turner, and S. E. Koch, 2017: Analysis of a lower-tropospheric gravity wave train using direct and remote sensing measurement systems. Mon. Wea. Rev., 145, 27912812, https://doi.org/10.1175/MWR-D-16-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Transtrum, M. K., B. B. Machta, and J. P. Sethna, 2011: Geometry of nonlinear least squares with applications to sloppy models and optimization. Phys. Rev. E, 83, 036701, https://doi.org/10.1103/PhysRevE.83.036701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2005: Arctic mixed-phase cloud properties from AERI lidar observations: Algorithm and results from SHEBA. J. Appl. Meteor., 44, 427444, https://doi.org/10.1175/JAM2208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2007: Improved ground-based liquid water path retrievals using a combined infrared and microwave approach. J. Geophys. Res., 112, D15204, https://doi.org/10.1029/2007JD008530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2008: Ground-based infrared retrievals of optical depth, effective radius, and composition of airborne mineral dust above the Sahel. J. Geophys. Res., 113, D00E03, https://doi.org/10.1029/2008JD010054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and U. Löhnert, 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor. Climatol., 53, 752771, https://doi.org/10.1175/JAMC-D-13-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and W. G. Blumberg, 2019: Improvements to the AERIoe thermodynamic profile retrieval algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 12, 13391354, https://doi.org/10.1109/JSTARS.2018.2874968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and U. Löhnert, 2021: Ground-based temperature and humidity profiling: Combining active and passive remote sensors. Atmos. Meas. Tech., 14, 30333048, https://doi.org/10.5194/amt-14-3033-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2004: The QME AERI LBLRTM: A closure experiment for downwelling high spectral resolution infrared radiance. J. Atmos. Sci., 61, 26572675, https://doi.org/10.1175/JAS3300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., E. J. Mlawer, and R. E. Revercomb, 2016: Water vapor observations in the ARM program. The Atmospheric Radiation Measurement Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, T. J., W. F. Feltz, and S. A. Ackerman, 2008: The temporal evolution of convective indices in storm-producing environments. Wea. Forecasting, 23, 786794, https://doi.org/10.1175/2008WAF2007046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, T. J., D. D. Turner, L. K. Berg, and S. K. Krueger, 2013: Ground-based remote retrievals of cumulus entrainment rates. J. Atmos. Oceanic Technol., 30, 14601471, https://doi.org/10.1175/JTECH-D-12-00187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, T. J., D. D. Turner, T. Heus, and W. G. Blumberg, 2022: Observing profiles of derived kinematic field quantities using a network of profiling sites. J. Atmos. Oceanic Technol., 39, 335351, https://doi.org/10.1175/JTECH-D-21-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakefield, R. A., D. D. Turner, and J. B. Basara, 2021: Evaluation of a land–atmosphere coupling metric computed from a ground-based infrared interferometer. J. Hydrometeor., 22, 20732087, https://doi.org/10.1175/JHM-D-20-0303.1.

    • Search Google Scholar
    • Export Citation
  • Wells, R. J., 1999: Rapid approximation to the Voight/Faddeeva function and its derivatives. J. Quant. Spectrosc. Radiat. Transfer, 62, 2948, https://doi.org/10.1016/S0022-4073(97)00231-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yurganov, L., W. McMillan, C. Wilson, M. Fischer, S. Biraud, and C. Sweeney, 2010: Carbon monoxide mixing ratios over Oklahoma between 2002 and 2009 retrieved from Atmospheric Emitted Radiance Interferometer spectra. Atmos. Meas. Tech., 3, 13191331, https://doi.org/10.5194/amt-3-1319-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 112 112 6
Full Text Views 47 47 3
PDF Downloads 55 55 3

The Impact of Nonzenith Elevation Angles on Ground-Based Infrared Thermodynamic Retrievals

Jongjin SeoaDepartment of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin
bSpace Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Jongjin Seo in
Current site
Google Scholar
PubMed
Close
,
Timothy J. WagnerbSpace Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Timothy J. Wagner in
Current site
Google Scholar
PubMed
Close
,
P. Jonathan GerobSpace Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by P. Jonathan Gero in
Current site
Google Scholar
PubMed
Close
, and
David D. TurnercNational Oceanic and Atmospheric Administration/Global Systems Laboratory, Boulder, Colorado

Search for other papers by David D. Turner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observing thermodynamic profiles within the planetary boundary layer is essential to understanding and predicting atmospheric phenomena because of the significant exchange of sensible and latent heat between the land and atmosphere within that layer. The Atmospheric Emitted Radiance Interferometer (AERI) is a ground-based infrared spectrometer used to obtain the vertical profiles of temperature and water vapor mixing ratio. Most AERIs are only capable of zenith views, although the Marine AERI (M-AERI) has a design that allows it to view various elevation angles. In this study, we quantify the improvement in the information content and accuracy of the retrieved profiles when nonzenith angles are included, as is common with microwave radiometer profilers. The impacts of the additional scan angles are quantified through both a synthetic study and with M-AERI observations from the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) campaign. The simulation study shows that low elevation angles contain more information content for temperature whereas high elevation angles have more information content for water vapor. Outside of very humid environments, the addition of low elevation angles also results in lower root-mean-square errors when compared with high angles for both temperature and water vapor mixing ratio, although this is primarily a result of averaging multiple observations together to reduce instrument noise. Real-world results from the ACAPEX dataset indicate similar results as were found for the simulation study, although not all predicted benefits are realized because of the small sample size and observational uncertainties.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jongjin Seo, jseo47@wisc.edu

Abstract

Observing thermodynamic profiles within the planetary boundary layer is essential to understanding and predicting atmospheric phenomena because of the significant exchange of sensible and latent heat between the land and atmosphere within that layer. The Atmospheric Emitted Radiance Interferometer (AERI) is a ground-based infrared spectrometer used to obtain the vertical profiles of temperature and water vapor mixing ratio. Most AERIs are only capable of zenith views, although the Marine AERI (M-AERI) has a design that allows it to view various elevation angles. In this study, we quantify the improvement in the information content and accuracy of the retrieved profiles when nonzenith angles are included, as is common with microwave radiometer profilers. The impacts of the additional scan angles are quantified through both a synthetic study and with M-AERI observations from the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) campaign. The simulation study shows that low elevation angles contain more information content for temperature whereas high elevation angles have more information content for water vapor. Outside of very humid environments, the addition of low elevation angles also results in lower root-mean-square errors when compared with high angles for both temperature and water vapor mixing ratio, although this is primarily a result of averaging multiple observations together to reduce instrument noise. Real-world results from the ACAPEX dataset indicate similar results as were found for the simulation study, although not all predicted benefits are realized because of the small sample size and observational uncertainties.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jongjin Seo, jseo47@wisc.edu
Save