• Alexander, M. A., J. D. Scott, K. D. Friedland, K. E. Mills, J. A. Nye, A. J. Pershing, and A. C. Thomas, 2018: Projected sea surface temperatures over the 21st century: Changes in the mean, variability and extremes for large marine ecosystem regions of northern oceans. Elementa, 6, 9, https://doi.org/10.1525/elementa.191.

    • Search Google Scholar
    • Export Citation
  • Banzon, V., T. M. Smith, T. M. Chin, C. Liu, and W. Hankins, 2016: A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data, 8, 165176, https://doi.org/10.5194/essd-8-165-2016.

    • Search Google Scholar
    • Export Citation
  • Cavole, L. M., and Coauthors, 2016: Biological impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: Winners, losers, and the future. Oceanography, 29 (2), 273285, https://doi.org/10.5670/oceanog.2016.32.

    • Search Google Scholar
    • Export Citation
  • Chang, P., and Coauthors, 2020: An unprecedented set of high‐resolution Earth system simulations for understanding multiscale interactions in climate variability and change. J. Adv. Model. Earth Syst., 12, e2020MS002298, https://doi.org/10.1029/2020MS002298.

    • Search Google Scholar
    • Export Citation
  • Coleman, M. A., A. J. Minne, S. Vranken, and T. Wernberg, 2020: Genetic tropicalisation following a marine heatwave. Sci. Rep., 10, 12726, https://doi.org/10.1038/s41598-020-69665-w.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, part II—Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305, https://doi.org/10.3402/tellusa.v29i4.11362.

    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., and C. Laufkötter, 2018: Emerging risks from marine heat waves. Nat. Commun., 9, 650, https://doi.org/10.1038/s41467-018-03163-6.

    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., E. M. Fischer, and N. Gruber, 2018: Marine heatwaves under global warming. Nature, 560, 360364, https://doi.org/10.1038/s41586-018-0383-9.

    • Search Google Scholar
    • Export Citation
  • Gurgel, C. F. D., O. Camacho, A. J. Minne, T. Wernberg, and M. A. Coleman, 2020: Marine heatwave drives cryptic loss of genetic diversity in underwater forests. Curr. Biol., 30, 11991206, https://doi.org/10.1016/j.cub.2020.01.051.

    • Search Google Scholar
    • Export Citation
  • Hassani, H., 2007: Singular spectrum analysis: Methodology and comparison. J. Data Sci., 5, 239257, https://doi.org/10.6339/JDS.2007.05(2).396.

    • Search Google Scholar
    • Export Citation
  • Hayashida, H., R. J. Matear, P. G. Strutton, and X. Zhang, 2020: Insights into projected changes in marine heatwaves from a high-resolution ocean circulation model. Nat. Commun., 11, 4352, https://doi.org/10.1038/s41467-020-18241-x.

    • Search Google Scholar
    • Export Citation
  • Hobday, A. J., and Coauthors, 2016: A hierarchical approach to defining marine heatwaves. Prog. Oceanogr., 141, 227238, https://doi.org/10.1016/j.pocean.2015.12.014.

    • Search Google Scholar
    • Export Citation
  • Hobday, A. J., and Coauthors, 2018: Categorizing and naming marine heatwaves. Oceanography, 31 (2), 162173, https://doi.org/10.5670/oceanog.2018.205.

    • Search Google Scholar
    • Export Citation
  • Holbrook, N. J., A. S. Gupta, E. C. J. Oliver, A. J. Hobday, J. A. Benthuysen, H. A. Scannell, D. A. Smale, and T. Wernberg, 2020: Keeping pace with marine heatwaves. Nat. Rev. Earth Environ., 1, 482493, https://doi.org/10.1038/s43017-020-0068-4.

    • Search Google Scholar
    • Export Citation
  • Hughes, T. P., and Coauthors, 2019: Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Climate Change, 9, 4043, https://doi.org/10.1038/s41558-018-0351-2.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Search Google Scholar
    • Export Citation
  • Jacox, M. G., 2019: Marine Heatwaves in a Changing Climate. Nature Publishing Group, 485 pp.

  • Jacox, M. G., M. A. Alexander, S. J. Bograd, and J. D. Scott, 2020: Thermal displacement by marine heatwaves. Nature, 584, 8286, https://doi.org/10.1038/s41586-020-2534-z.

    • Search Google Scholar
    • Export Citation
  • Jones, T., and Coauthors, 2018: Massive mortality of a planktivorous seabird in response to a marine heatwave. Geophys. Res. Lett., 45, 31933202, https://doi.org/10.1002/2017GL076164.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Laufkötter, C., J. Zscheischler, and T. L. Frölicher, 2020: High-impact marine heatwaves attributable to human-induced global warming. Science, 369, 16211625, https://doi.org/10.1126/science.aba0690.

    • Search Google Scholar
    • Export Citation
  • Leung, J. Y., B. D. Russell, and S. D. Connell, 2019: Adaptive responses of marine gastropods to heatwaves. One Earth, 1, 374381, https://doi.org/10.1016/j.oneear.2019.10.025.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213, https://doi.org/10.1007/s10584-011-0156-z.

    • Search Google Scholar
    • Export Citation
  • Mills, K., and Coauthors, 2013: Fisheries management in a changing climate: Lessons from the 2012 ocean heat wave in the northwest Atlantic. Oceanography, 26 (2), 191195, https://doi.org/10.5670/oceanog.2013.27.

    • Search Google Scholar
    • Export Citation
  • Oliver, E. C., 2019: Mean warming not variability drives marine heatwave trends. Climate Dyn., 53, 16531659, https://doi.org/10.1007/s00382-019-04707-2.

    • Search Google Scholar
    • Export Citation
  • Oliver, E. C., J. A. Benthuysen, N. L. Bindoff, A. J. Hobday, N. J. Holbrook, C. N. Mundy, and S. E. Perkins-Kirkpatrick, 2017: The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun., 8, 16101, https://doi.org/10.1038/ncomms16101.

    • Search Google Scholar
    • Export Citation
  • Oliver, E. C., and Coauthors, 2018: Longer and more frequent marine heatwaves over the past century. Nat. Commun., 9, 1324, https://doi.org/10.1038/s41467-018-03732-9.

    • Search Google Scholar
    • Export Citation
  • Oliver, E. C., and Coauthors, 2019: Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci., 6, 734, https://doi.org/10.3389/fmars.2019.00734.

    • Search Google Scholar
    • Export Citation
  • Oliver, E. C., J. A. Benthuysen, S. Darmaraki, M. G. Donat, A. J. Hobday, N. J. Holbrook, R. W. Schlegel, and A. Sen Gupta, 2021: Marine heatwaves. Annu. Rev. Mar. Sci., 13, 313342, https://doi.org/10.1146/annurev-marine-032720-095144.

    • Search Google Scholar
    • Export Citation
  • Pilo, G. S., N. J. Holbrook, A. E. Kiss, and A. M. Hogg, 2019: Sensitivity of marine heatwave metrics to ocean model resolution. Geophys. Res. Lett., 46, 14 60414 612, https://doi.org/10.1029/2019GL084928.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Rilling, G., P. Flandrin, and P. Goncalves, 2003: On empirical mode decomposition and its algorithms. Proc. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, Grado, Italy, HAL-Inria, 811, https://hal.inria.fr/inria-00570628/en/.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and P. Sura, 2009: Reconciling non-Gaussian climate statistics with linear dynamics. J. Climate, 22, 11931207, https://doi.org/10.1175/2008JCLI2358.1.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2015: Need for caution in interpreting extreme weather statistics. J. Climate, 28, 91669187, https://doi.org/10.1175/JCLI-D-15-0020.1.

    • Search Google Scholar
    • Export Citation
  • Sura, P., and P. D. Sardeshmukh, 2009: A global view of air–sea thermal coupling and related non-Gaussian SST variability. Atmos. Res., 94, 140149, https://doi.org/10.1016/j.atmosres.2008.08.008.

    • Search Google Scholar
    • Export Citation
  • Thomsen, M. S., L. Mondardini, T. Alestra, S. Gerrity, L. Tait, P. M. South, S. A. Lilley, and D. R. Schiel, 2019: Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci., 6, 84, https://doi.org/10.3389/fmars.2019.00084.

    • Search Google Scholar
    • Export Citation
  • Thomson, J. A., D. A. Burkholder, M. R. Heithaus, J. W. Fourqurean, M. W. Fraser, J. Statton, and G. A. Kendrick, 2015: Extreme temperatures, foundation species, and abrupt ecosystem change: An example from an iconic seagrass ecosystem. Global Change Biol., 21, 14631474, https://doi.org/10.1111/gcb.12694.

    • Search Google Scholar
    • Export Citation
  • Wei, M., F. Qiao, Y. Guo, J. Deng, Z. Song, Q. Shu, and X. Yang, 2019: Quantifying the importance of interannual, interdecadal and multidecadal climate natural variabilities in the modulation of global warming rates. Climate Dyn., 53, 67156727, https://doi.org/10.1007/s00382-019-04955-2.

    • Search Google Scholar
    • Export Citation
  • Wernberg, T., and Coauthors, 2016: Climate-driven regime shift of a temperate marine ecosystem. Science, 353, 169172, https://doi.org/10.1126/science.aad8745.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., G. Hegerl, F. W. Zwiers, and J. Kenyon, 2005: Avoiding inhomogeneity in percentile-based indices of temperature extremes. J. Climate, 18, 16411651, https://doi.org/10.1175/JCLI3366.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 214 212 102
Full Text Views 127 127 48
PDF Downloads 188 188 88

A New Model for Isolating the Marine Heatwave Changes under Warming Scenarios

View More View Less
  • 1 aFrontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
  • | 2 bKey Laboratory of Physical Oceanography, Ocean University of China, Qingdao, China
  • | 3 cPilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
  • | 4 dCollege of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China
Restricted access

Abstract

Marine heatwaves (MHWs) exert devastating impacts on ecosystems. Understanding their responses to anthropogenic forcing has attracted rapidly growing scientific interest. Given the disparate adaptation capacity and mobility among marine species, it is crucial to disentangle changes of MHWs related to the rising mean temperature from those to the changing temperature variability. It has been suggested that the latter’s effects could be isolated by replacing a fixed baseline with a moving one for calculating the climatological mean and percentile metrics in MHW analysis. In this study, the effects of a moving baseline on MHW statistics (annual MHW days and cumulative intensity) changes in a warming climate are systematically evaluated based on simulations from simple stochastic climate models and a set of coupled general circulation models in the Community Earth System Model Large Ensemble project. On the one hand, a moving baseline does not necessarily remove the influences of rising mean temperature on MHW changes and will artificially cause negative trends in MHW statistics when the ocean exhibits an accelerated warming rate as in the RCP8.5 scenario. On the other hand, it always underestimates the effects of changing temperature variability on MHW changes. We propose a new model that adopts a “partial” moving baseline combined with a local linear detrending to isolate MHW changes caused by changing temperature variability.

Significance Statement

A new model is proposed to isolate marine heatwave changes caused by changing temperature variability from those by rising mean temperature under greenhouse warming.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhao Jing, jingzhao198763@sina.com

Abstract

Marine heatwaves (MHWs) exert devastating impacts on ecosystems. Understanding their responses to anthropogenic forcing has attracted rapidly growing scientific interest. Given the disparate adaptation capacity and mobility among marine species, it is crucial to disentangle changes of MHWs related to the rising mean temperature from those to the changing temperature variability. It has been suggested that the latter’s effects could be isolated by replacing a fixed baseline with a moving one for calculating the climatological mean and percentile metrics in MHW analysis. In this study, the effects of a moving baseline on MHW statistics (annual MHW days and cumulative intensity) changes in a warming climate are systematically evaluated based on simulations from simple stochastic climate models and a set of coupled general circulation models in the Community Earth System Model Large Ensemble project. On the one hand, a moving baseline does not necessarily remove the influences of rising mean temperature on MHW changes and will artificially cause negative trends in MHW statistics when the ocean exhibits an accelerated warming rate as in the RCP8.5 scenario. On the other hand, it always underestimates the effects of changing temperature variability on MHW changes. We propose a new model that adopts a “partial” moving baseline combined with a local linear detrending to isolate MHW changes caused by changing temperature variability.

Significance Statement

A new model is proposed to isolate marine heatwave changes caused by changing temperature variability from those by rising mean temperature under greenhouse warming.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhao Jing, jingzhao198763@sina.com

Supplementary Materials

    • Supplemental Materials (PDF 396 KB)
Save