• Ackerman, S. A., R. E. Holz, R. Frey, E. W. Eloranta, B. C. Maddux, and M. McGill, 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25, 10731086, https://doi.org/10.1175/2007JTECHA1053.1.

    • Search Google Scholar
    • Export Citation
  • Bartlett, B., J. Casey, F. Padula, A. Pearlman, D. Pogorzala, and C. Cao, 2018: Independent validation of the Advanced Baseline Imager (ABI) on NOAA’s GOES-16: Post-launch ABI airborne science field campaign results. Proc. SPIE, 10764, 107640H, https://doi.org/10.1117/12.2323672.

  • Campbell, J. R., M. A. Vaughan, M. Oo, R. E. Holz, J. R. Lewis, and J. E. Welton, 2015: Distinguishing cirrus cloud presence in autonomous lidar measurements. Atmos. Meas. Tech., 8, 435449, https://doi.org/10.5194/amt-8-435-2015.

    • Search Google Scholar
    • Export Citation
  • Chew, B. N., J. R. Campbell, J. S. Reid, D. M. Giles, E. J. Welton, S. V. Salinas, and S. C. Liew, 2011: Tropical cirrus cloud contamination in sun photometer data. Atmos. Environ., 45, 67246731, https://doi.org/10.1016/j.atmosenv.2011.08.017.

    • Search Google Scholar
    • Export Citation
  • Danielson, J. J., and D. B. Gesch, 2011: Global multi-resolution terrain elevation data 2010 (GMTED2010). USGS Open-File Rep. 2011-1073, 26 pp., https://doi.org/10.3133/ofr20111073.

  • Dessler, A. E., and P. Yang, 2003: The distribution of tropical thin cirrus clouds inferred from Terra MODIS data. J. Climate, 16, 12411247, https://doi.org/10.1175/1520-0442(2003)16<1241:TDOTTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, B.-C., and Y. J. Kaufman, 1995: Selection of the 1.375-μm MODIS channel for remote sensing of cirrus clouds and stratospheric aerosols from space. J. Atmos. Sci., 52, 42314237, https://doi.org/10.1175/1520-0469(1995)052<4231:SOTMCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, B.-C., A. F. H. Goetz, and W. J. Wiscombe, 1993: Cirrus cloud detection from Airborne Imaging Spectrometer data using the 1.38 μm water vapor band. Geophys. Res. Lett., 20, 301304, https://doi.org/10.1029/93GL00106.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., 2010: ABI cloud mask. NOAA/NESDIS/STAR Algorithm Theoretical Basis Doc., 93 pp.

  • Heidinger, A. K., 2012: ABI cloud height. NOAA/NESDIS/STAR Algorithm Theoretical Basis Doc., version 3.0, 79 pp., https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ATBD_GOES-R_Cloud%20Height_v3.0_July%202012.pdf.

  • Hogan, T. F., and Coauthors, 2014: The Navy Global Environmental Model. Oceanography, 27 (3), 116125, https://doi.org/10.5670/oceanog.2014.73.

    • Search Google Scholar
    • Export Citation
  • Justice, C. O., and Coauthors, 1998: The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens., 36, 12281249, https://doi.org/10.1109/36.701075.

    • Search Google Scholar
    • Export Citation
  • Lee, J., P. Yang, A. E. Dessler, B. C. Gao, and S. Platnick, 2009: Distribution and radiative forcing of tropical thin cirrus clouds. J. Atmos. Sci., 66, 37213731, https://doi.org/10.1175/2009JAS3183.1.

    • Search Google Scholar
    • Export Citation
  • Lolli, S., and Coauthors, 2017: Daytime top-of-the-atmosphere cirrus cloud radiative forcing properties at Singapore. J. Appl. Meteor. Climatol., 56, 12491257, https://doi.org/10.1175/JAMC-D-16-0262.1.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and Q. Zhang, 2014: The CloudSat radar‐lidar geometrical profile product (RL‐GeoProf): Updates, improvements, and selected results. J. Geophys. Res. Atmos., 119, 94419462, https://doi.org/10.1002/2013JD021374.

    • Search Google Scholar
    • Export Citation
  • Marquis, J. W., A. S. Bogdanoff, J. R. Campbell, J. A. Cummings, D. L. Westphal, N. J. Smith, and J. Zhang, 2017: Estimating infrared radiometric satellite sea surface temperature retrieval cold biases in the tropics due to unscreened optically thin cirrus clouds. J. Atmos. Oceanic Technol., 34, 355373, https://doi.org/10.1175/JTECH-D-15-0226.1.

    • Search Google Scholar
    • Export Citation
  • McHardy, T. M., and Coauthors, 2021: Advancing maritime transparent cirrus detection using the Advanced Baseline Imager “cirrus” band. J. Atmos. Oceanic Technol., 38, 10931110, https://doi.org/10.1175/JTECH-D-20-0130.1.

    • Search Google Scholar
    • Export Citation
  • Meyer, K., and S. Platnick, 2010: Utilizing the MODIS 1.38 μm channel for cirrus cloud optical thickness retrievals: Algorithm and retrieval uncertainties. J. Geophys. Res., 115, D24209, https://doi.org/10.1029/2010JD014872.

    • Search Google Scholar
    • Export Citation
  • Meyer, K., P. Yang, and B. C. Gao, 2004: Optical thickness of tropical cirrus clouds derived from the MODIS 0.66 and 1.375-μm channels. IEEE Trans. Geosci. Remote Sens., 42, 833841, https://doi.org/10.1109/TGRS.2003.818939.

    • Search Google Scholar
    • Export Citation
  • NOAA/NESDIS, 2018: ABI aerosol detection product. NOAA/NESDIS NOAA/NESDIS/STAR Algorithm Theoretical Basis Doc., version 3.0, 84 pp., https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ATBD_GOES-R_Aerosol_Detection_v3.0_Jan2019.pdf.

  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612288, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and B. S. Cho, 1992: Subvisual–thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor., 31, 12751285, https://doi.org/10.1175/1520-0450(1992)031<1275:STCLDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and J. R. Campbell, 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and synoptic properties. J. Atmos. Sci., 58, 481496, https://doi.org/10.1175/1520-0469(2001)058<0481:AMCCCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., and Coauthors, 2013: Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel. Bull. Amer. Meteor. Soc., 94, 10311049, https://doi.org/10.1175/BAMS-D-12-00117.1.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M. A., D. M. Winker, and K. A. Powell, 2005: CALIOP Algorithm Theoretical Basis Document—Part 2: Feature detection and layer properties algorithms. NASA Rep. PC-SCI-202, 87 pp., https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202_Part2_rev1x01.pdf.

  • Vaughan, M. A., and Coauthors, 2020: Cloud–Aerosol Lidar Infrared Pathfinder satellite observations data management system data products catalog. NASA Doc. PC-SCI-503, 273 pp., https://ntrs.nasa.gov/api/citations/20220003549/downloads/CALIPSO_DPC_Rev4x94.pdf.

  • Walther, A., W. Straka, and A. K. Heidinger, 2013: ABI Algorithm Theoretical Basis Document for Daytime Cloud Optical and Microphysical Properties (DCOMP). NOAA/NESDIS/STAR Algorithm Theoretical Basis Doc., version 3.0, 66 pp., https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ATBD_GOES-R_Cloud_DCOMP_v3.0_Jun2013.pdf.

  • Wang, C., P. Yang, A. Dessler, B. A. Baum, and Y. Hu, 2014: Estimation of the cirrus cloud scattering phase function from satellite observations. J. Quant. Spectrosc. Radiat. Transfer, 138, 3649, https://doi.org/10.1016/j.jqsrt.2014.02.001.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, https://doi.org/10.1029/2007GL030135.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and Coauthors, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, https://doi.org/10.1175/2009JTECHA1281.1.

    • Search Google Scholar
    • Export Citation
  • Young, S. A., and M. A. Vaughan, 2009: The retrieval of profiles of particulate extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description. J. Atmos. Oceanic Technol., 26, 11051119, https://doi.org/10.1175/2008JTECHA1221.1.

    • Search Google Scholar
    • Export Citation
  • Young, S. A., M. A. Vaughan, A. Garnier, J. L. Tackett, J. D. Lambeth, and K. A. Powell, 2018: Extinction and optical depth retrievals for CALIPSO’s version 4 data release. Atmos. Meas. Tech., 11, 57015727, https://doi.org/10.5194/amt-11-5701-2018.

    • Search Google Scholar
    • Export Citation
  • Yu, F., X. Wu, X. Shao, B. Efremova, H. Yoo, H. Qian, and B. Iacovazzi, 2017: Early radiometric calibration performances of GOES-16 Advanced Baseline Imager. Proc. SPIE, 10402, 104020S, https://doi.org/10.1117/12.2275195.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 170 170 74
Full Text Views 51 51 14
PDF Downloads 54 54 17

GOES ABI Detection of Thin Cirrus over Land

View More View Less
  • 1 aAmerican Society for Engineering Education, Washington, D.C.
  • | 2 bNaval Research Laboratory, Monterey, California
  • | 3 cCommSensLab, Department of Signal Theory and Communications, UPC, Barcelona, Spain
  • | 4 dScience Systems Applications Inc., Hampton, Virginia
  • | 5 eDepartment of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota
  • | 6 fCooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado
  • | 7 gDepartment of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona
Restricted access

Abstract

This study develops a new thin cirrus detection algorithm applicable to overland scenes. The methodology builds from a previously developed overwater algorithm, which makes use of the Geostationary Operational Environmental Satellite 16 (GOES-16) Advanced Baseline Imager (ABI) channel 4 radiance (1.378-μm “cirrus” band). Calibration of this algorithm is based on coincident Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) cloud profiles. Emphasis is placed on rejection of false detections that are more common in overland scenes. Clear-sky false alarm rates over land are examined as a function of precipitable water vapor (PWV), showing that nearly all pixels having a PWV of <0.4 cm produce false alarms. Enforcing an above-cloud PWV minimum threshold of ∼1 cm ensures that most low-/midlevel clouds are not misclassified as cirrus by the algorithm. Pixel-filtering based on the total column PWV and the PWV for a layer between the top of the atmosphere (TOA) and a predetermined altitude H removes significant land surface and low-/midlevel cloud false alarms from the overall sample while preserving over 80% of valid cirrus pixels. Additionally, the use of an aggressive PWV layer threshold preferentially removes noncirrus pixels such that the remaining sample is composed of nearly 70% cirrus pixels, at the cost of a much-reduced overall sample size. This study shows that lower-tropospheric clouds are a much more significant source of uncertainty in cirrus detection than the land surface.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Theodore M. McHardy, theodore.mchardy.ctr@nrlmry.navy.mil

Abstract

This study develops a new thin cirrus detection algorithm applicable to overland scenes. The methodology builds from a previously developed overwater algorithm, which makes use of the Geostationary Operational Environmental Satellite 16 (GOES-16) Advanced Baseline Imager (ABI) channel 4 radiance (1.378-μm “cirrus” band). Calibration of this algorithm is based on coincident Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) cloud profiles. Emphasis is placed on rejection of false detections that are more common in overland scenes. Clear-sky false alarm rates over land are examined as a function of precipitable water vapor (PWV), showing that nearly all pixels having a PWV of <0.4 cm produce false alarms. Enforcing an above-cloud PWV minimum threshold of ∼1 cm ensures that most low-/midlevel clouds are not misclassified as cirrus by the algorithm. Pixel-filtering based on the total column PWV and the PWV for a layer between the top of the atmosphere (TOA) and a predetermined altitude H removes significant land surface and low-/midlevel cloud false alarms from the overall sample while preserving over 80% of valid cirrus pixels. Additionally, the use of an aggressive PWV layer threshold preferentially removes noncirrus pixels such that the remaining sample is composed of nearly 70% cirrus pixels, at the cost of a much-reduced overall sample size. This study shows that lower-tropospheric clouds are a much more significant source of uncertainty in cirrus detection than the land surface.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Theodore M. McHardy, theodore.mchardy.ctr@nrlmry.navy.mil
Save