• Abrahamsen, E. P., 2014: Sustaining observations in the polar oceans. Philos. Trans. Roy. Soc., A372, 20130337, https://doi.org/10.1098/rsta.2013.0337.

  • Amante, C., and B. Eakins, 2009: ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-24, 25 pp., https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf.

  • Argo, 2019: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC): Snapshot of Argo GDAC of 8 October 2019. SEANOE, https://doi.org/10.17882/42182#67548.

  • Balwada, D., K. G. Speer, J. H. LaCasce, W. B. Owens, J. Marshall, and R. Ferrari, 2016: Circulation and stirring in the southeast Pacific Ocean and the Scotia Sea sectors of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 46, 20052027, https://doi.org/10.1175/JPO-D-15-0207.1.

    • Search Google Scholar
    • Export Citation
  • Balwada, D., J. H. LaCasce, K. G. Speer, and R. Ferrari, 2021: Relative dispersion in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 51, 553574, https://doi.org/10.1175/JPO-D-19-0243.1.

    • Search Google Scholar
    • Export Citation
  • Boebel, O., C. Schmid, and W. Zenk, 1997: Flow and recirculation of Antarctic Intermediate Water across the Rio Grande rise. J. Geophys. Res., 102, 20 96720 986, https://doi.org/10.1029/97JC00977.

    • Search Google Scholar
    • Export Citation
  • Campbell, E. C., E. A. Wilson, G. W. K. Moore, S. C. Riser, C. E. Brayton, M. R. Mazloff, and L. D. Talley, 2019: Antarctic offshore polynyas linked to Southern Hemisphere climate anomalies. Nature, 570, 319325, https://doi.org/10.1038/s41586-019-1294-0.

    • Search Google Scholar
    • Export Citation
  • Chamberlain, P. M., L. D. Talley, M. R. Mazloff, S. C. Riser, K. Speer, A. R. Gray, and A. Schwartzman, 2018: Observing the ice-covered Weddell Gyre with profiling floats: Position uncertainties and correlation statistics. J. Geophys. Res. Oceans, 123, 83838410, https://doi.org/10.1029/2017JC012990.

    • Search Google Scholar
    • Export Citation
  • Duda, T. F., A. K. Morozov, B. M. Howe, M. G. Brown, K. Speer, P. Lazarevich, P. F. Worcester, and B. D. Cornuelle, 2006: Evaluation of a long-range joint acoustic navigation/thermometry system. OCEANS 2006, Boston, MA, IEEE, https://doi.org/10.1109/OCEANS.2006.306999.

  • Fahrbach, E., M. Hoppema, G. Rohardt, O. Boebel, O. Klatt, and A. Wisotzki, 2011: Warming of deep and abyssal water masses along the Greenwich meridian on decadal time scales: The Weddell Gyre as a heat buffer. Deep-Sea Res. II, 58, 25092523, https://doi.org/10.1016/j.dsr2.2011.06.007.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., K. Speer, J. R. Ledwell, and A. C. Naveira Garabato, 2007: Mixing and stirring in the Southern Ocean. Eos, Trans. Amer. Geophys. Union, 88, 382–383, https://doi.org/10.1029/2007EO390002.

    • Search Google Scholar
    • Export Citation
  • Gould, W. J., 2005: From swallow floats to Argo—The development of neutrally buoyant floats. Deep-Sea Res. II, 52, 529543, https://doi.org/10.1016/j.dsr2.2004.12.005.

    • Search Google Scholar
    • Export Citation
  • Gray, A. R., and S. C. Riser, 2014: A global analysis of Sverdrup balance using absolute geostrophic velocities from Argo. J. Phys. Oceanogr., 44, 12131229, https://doi.org/10.1175/JPO-D-12-0206.1.

    • Search Google Scholar
    • Export Citation
  • Gray, A. R., and Coauthors, 2018: Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean. Geophys. Res. Lett., 45, 90499057, https://doi.org/10.1029/2018GL078013.

    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., and W. B. Owens, 1999: Direct measurement of the deep circulation within the Brazil Basin. Deep-Sea Res. II, 46, 335353, https://doi.org/10.1016/S0967-0645(98)00097-6.

    • Search Google Scholar
    • Export Citation
  • Ide, K., P. Courtier, M. Ghil, and A. C. Lorenc, 1997: Unified notation for data assimilation: Operational, sequential and variational (gtspecial issueltdata assimilation in meteorology and oceanography: Theory and practice). J. Meteor. Soc. Japan, 75, 181189, https://doi.org/10.2151/jmsj1965.75.1B_181.

    • Search Google Scholar
    • Export Citation
  • Jahan, A., K. L. Edwards, and M. Bahraminasab, 2016: Multi-Criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design. 2nd ed. Butterworth-Heinemann, 252 pp.

  • Johnson, G. C., and Coauthors, 2022: Argo—Two decades: Global oceanography, revolutionized. Annu. Rev. Mar. Sci., 14, 379403, https://doi.org/10.1146/annurev-marine-022521-102008.

    • Search Google Scholar
    • Export Citation
  • Johnson, K. S., and H. Claustre, 2016: Bringing biogeochemistry into the Argo age. Eos, 97, https://doi.org/10.1029/2016EO062427.

  • Katsumata, K., and H. Yoshinari, 2010: Uncertainties in global mapping of Argo drift data at the parking level. J. Oceanogr., 66, 553569, https://doi.org/10.1007/s10872-010-0046-4.

    • Search Google Scholar
    • Export Citation
  • Kimball, P., and S. Rock, 2011: Sonar-based iceberg-relative navigation for autonomous underwater vehicles. Deep-Sea Res. II, 58, 13011310, https://doi.org/10.1016/j.dsr2.2010.11.005.

    • Search Google Scholar
    • Export Citation
  • Klatt, O., O. Boebel, and E. Fahrbach, 2007: A profiling float’s sense of ice. J. Atmos. Oceanic Technol., 24, 13011308, https://doi.org/10.1175/JTECH2026.1.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2000: Floats and f/H. J. Mar. Res., 58, 6195, https://doi.org/10.1357/002224000321511205.

  • LaCasce, J. H., R. Ferrari, J. Marshall, R. Tulloch, D. Balwada, and K. Speer, 2014: Float-derived isopycnal diffusivities in the DIMES experiment. J. Phys. Oceanogr., 44, 764780, https://doi.org/10.1175/JPO-D-13-0175.1.

    • Search Google Scholar
    • Export Citation
  • Li, T., H. Pareek, P. Ravikumar, D. Balwada, and K. Speer, 2015: Tracking with ranked signals. Conf. on Uncertainty in Artificial Intelligence (UAI), Amsterdam, Netherlands, AUAI, 474–483, http://auai.org/uai2015/proceedings/papers/12.pdf.

  • Nguyen, A. T., P. Heimbach, V. V. Garg, V. Ocaña, C. Lee, and L. Rainville, 2020: Impact of synthetic arctic Argo-type floats in a coupled ocean–sea ice state estimation framework. J. Atmos. Oceanic Technol., 37, 14771495, https://doi.org/10.1175/JTECH-D-19-0159.1.

    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., and A. Colin de Verdière, 2014: The ocean general circulation near 1000-m depth. J. Phys. Oceanogr., 44, 384409, https://doi.org/10.1175/JPO-D-13-030.1.

    • Search Google Scholar
    • Export Citation
  • Parker, R. L., 1994: Geophysical Inverse Theory. Vol. 1. Princeton University Press, 386 pp., https://doi.org/10.1515/9780691206837.

  • Ramsey, A. L., H. H. Furey, and A. S. Bower, 2018: Deep floats reveal complex ocean circulation patterns. Eos, 99, https://doi.org/10.1029/2018EO105549.

    • Search Google Scholar
    • Export Citation
  • Rauch, H. E., F. Tung, and C. T. Striebel, 1965: Maximum likelihood estimates of linear dynamic systems. AIAA J., 3, 14451450, https://doi.org/10.2514/3.3166.

    • Search Google Scholar
    • Export Citation
  • Reeve, K. A., O. Boebel, T. Kanzow, V. Strass, G. Rohardt, and E. Fahrbach, 2016: A gridded data set of upper-ocean hydrographic properties in the Weddell Gyre obtained by objective mapping of Argo float measurements. Earth Syst. Sci. Data, 8, 1540, https://doi.org/10.5194/essd-8-15-2016.

    • Search Google Scholar
    • Export Citation
  • Riser, S. C., and Coauthors, 2016: Fifteen years of ocean observations with the global Argo array. Nat. Climate Change, 6, 145153, https://doi.org/10.1038/nclimate2872.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Coauthors, 2019: On the future of Argo: A global, full-depth, multi-disciplinary array. Front. Mar. Sci., 6, 439, https://doi.org/10.3389/fmars.2019.00439.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., D. Dorson, and J. Fontaine, 1986: The RAFOS system. J. Atmos. Oceanic Technol., 3, 672679, https://doi.org/10.1175/1520-0426(1986)003<0672:TRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., N. Gruber, M. A. Brzezinski, and J. P. Dunne, 2004: High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427, 5660, https://doi.org/10.1038/nature02127.

    • Search Google Scholar
    • Export Citation
  • Spiesecke, S., 2018: Analysis and modelling of RAFOS signal propagation under the Antarctic sea-ice for positioning Argo floats. M.S. thesis, Dept. of Electronics Engineering, Alfred Wegener Institute, 78 pp.

  • Swallow, J. C., 1955: A neutral-buoyancy float for measuring deep currents. Deep-Sea Res., 3, 7481, https://doi.org/10.1016/0146-6313(55)90037-X.

    • Search Google Scholar
    • Export Citation
  • Wallace, L. O., E. M. Van Wijk, S. R. Rintoul, and B. Hally, 2020: Bathymetry-constrained navigation of Argo floats under sea ice on the Antarctic continental shelf. Geophys. Res. Lett., 47, e2020GL087019, https://doi.org/10.1029/2020GL087019.

  • Webster, S. E., L. E. Freitag, C. M. Lee, and J. I. Gobat, 2015: Towards real-time under-ice acoustic navigation at mesoscale ranges. Proc. 2015 IEEE Int. Conf. on Robotics and Automation, Seattle, WA, IEEE, 537544, https://doi.org/10.1109/ICRA.2015.7139231.

  • Wong, A. P. S., and S. C. Riser, 2011: Profiling float observations of the upper ocean under sea ice off the Wilkes Land coast of Antarctica. J. Phys. Oceanogr., 41, 11021115, https://doi.org/10.1175/2011JPO4516.1.

    • Search Google Scholar
    • Export Citation
  • Wooding, C. M., H. H. Furey, and M. A. Pachece, 2005: RAFOS float processing at the Woods Hole Oceanographic Institution. WHOI Tech. Rep. WHOI-2005-02, 43 pp., https://darchive.mblwhoilibrary.org/bitstream/handle/1912/55/WHOI-2005-02.pdf?sequence=1&isAllowed=y.

  • Wunsch, C., 2006: Discrete Inverse and State Estimation Problems: With Geophysical Fluid Applications. Cambridge University Press, 396 pp. https://doi.org/10.1017/CBO9780511535949.

  • Yamazaki, K., S. Aoki, K. Shimada, T. Kobayashi, and Y. Kitade, 2020: Structure of the subpolar gyre in the Australian-Antarctic basin derived from Argo floats. J. Geophys. Res. Oceans, 125, e2019JC015406, https://doi.org/10.1029/2019JC015406.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 467 467 44
Full Text Views 251 251 36
PDF Downloads 226 226 24

Acoustic Float Tracking with the Kalman Smoother

Paul ChamberlainaScripps Institution of Oceanography, University of California, San Diego, San Diego, California

Search for other papers by Paul Chamberlain in
Current site
Google Scholar
PubMed
Close
,
Bruce CornuelleaScripps Institution of Oceanography, University of California, San Diego, San Diego, California

Search for other papers by Bruce Cornuelle in
Current site
Google Scholar
PubMed
Close
,
Lynne D. TalleyaScripps Institution of Oceanography, University of California, San Diego, San Diego, California

Search for other papers by Lynne D. Talley in
Current site
Google Scholar
PubMed
Close
,
Kevin SpeerbGeophysical Fluid Dynamics Institute, Florida State University, Tallahassee, Florida
cDepartment of Scientific Computing, Florida State University, Tallahassee, Florida

Search for other papers by Kevin Speer in
Current site
Google Scholar
PubMed
Close
,
Cathrine HancockbGeophysical Fluid Dynamics Institute, Florida State University, Tallahassee, Florida

Search for other papers by Cathrine Hancock in
Current site
Google Scholar
PubMed
Close
, and
Stephen RiserdCollege of the Environment, University of Washington, Seattle, Washington

Search for other papers by Stephen Riser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Acoustically tracked subsurface floats provide insights into ocean complexity and were first deployed over 60 years ago. A standard tracking method uses a least squares algorithm to estimate float trajectories based on acoustic ranging from moored sound sources. However, infrequent or imperfect data challenge such estimates, and least squares algorithms are vulnerable to non-Gaussian errors. Acoustic tracking is currently the only feasible strategy for recovering float positions in the sea ice region, a focus of this study. Acoustic records recovered from underice floats frequently lack continuous sound source coverage. This is because environmental factors such as surface sound channels and rough sea ice attenuate acoustic signals, while operational considerations make polar sound sources expensive and difficult to deploy. Here we present a Kalman smoother approach that, by including some estimates of float behavior, extends tracking to situations with more challenging datasets. The Kalman smoother constructs dynamically constrained, error-minimized float tracks and variance ellipses using all possible position data. This algorithm outperforms the least squares approach and a Kalman filter in numerical experiments. The Kalman smoother is applied to previously tracked floats from the southeast Pacific (DIMES experiment), and the results are compared with existing trajectories constructed using the least squares algorithm. The Kalman smoother is also used to reconstruct the trajectories of a set of previously untracked, acoustically enabled Argo floats in the Weddell Sea.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul Chamberlain, pchamber@ucsd.edu

Abstract

Acoustically tracked subsurface floats provide insights into ocean complexity and were first deployed over 60 years ago. A standard tracking method uses a least squares algorithm to estimate float trajectories based on acoustic ranging from moored sound sources. However, infrequent or imperfect data challenge such estimates, and least squares algorithms are vulnerable to non-Gaussian errors. Acoustic tracking is currently the only feasible strategy for recovering float positions in the sea ice region, a focus of this study. Acoustic records recovered from underice floats frequently lack continuous sound source coverage. This is because environmental factors such as surface sound channels and rough sea ice attenuate acoustic signals, while operational considerations make polar sound sources expensive and difficult to deploy. Here we present a Kalman smoother approach that, by including some estimates of float behavior, extends tracking to situations with more challenging datasets. The Kalman smoother constructs dynamically constrained, error-minimized float tracks and variance ellipses using all possible position data. This algorithm outperforms the least squares approach and a Kalman filter in numerical experiments. The Kalman smoother is applied to previously tracked floats from the southeast Pacific (DIMES experiment), and the results are compared with existing trajectories constructed using the least squares algorithm. The Kalman smoother is also used to reconstruct the trajectories of a set of previously untracked, acoustically enabled Argo floats in the Weddell Sea.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul Chamberlain, pchamber@ucsd.edu
Save