• Alexandrov, V., S. Sandven, J. Wahlin, and O. M. Johannessen, 2010: The relation between sea ice thickness and freeboard in the Arctic. Cryosphere, 4, 373380, https://doi.org/10.5194/tc-4-373-2010.

    • Search Google Scholar
    • Export Citation
  • Anderson, D. L., and W. F. Weeks, 1958: A theoretical analysis of sea-ice strength. Eos, Trans. Amer. Geophys. Union, 39, 632640, https://doi.org/10.1029/TR039i004p00632.

    • Search Google Scholar
    • Export Citation
  • Arnold, C. P., Jr., and C. H. Dey, 1986: Observing system simulation experiments: Past, present, and future. Bull. Amer. Meteor. Soc., 67, 687695, https://doi.org/10.1175/1520-0477(1986)067<0687:OSSEPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., 1992: Inverse Methods in Physical Oceanography. Cambridge University Press, 346 pp.

  • Dansereau, V., J. Weiss, P. Saramito, and P. Lattes, 2016: A Maxwell elasto-brittle rheology for sea ice modelling. Cryosphere, 10, 13391359, https://doi.org/10.5194/tc-10-1339-2016.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78, 25772591, https://doi.org/10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Francis O., G. Panteleev, M. Yaremchuk, V. Luchin, J. Stroh, P. Posey, and D. Hebert, 2018: Observing system simulation experiments and adjoint sensitivity analysis: Methods for observational programs in the Arctic Ocean. Arctic, 71 (Suppl.), 114, https://doi.org/10.14430/arctic4603.

    • Search Google Scholar
    • Export Citation
  • Giering, R., and T. Kaminski, 1998: Recipes for adjoint code construction. ACM Trans. Math. Software, 24, 437474, https://doi.org/10.1145/293686.293695.

    • Search Google Scholar
    • Export Citation
  • Goldberg, D. N., and P. Heimbach, 2013: Parameter and state estimation with a time-dependent adjoint marine ice sheet model. Cryosphere, 7, 16591678, https://doi.org/10.5194/tc-7-1659-2013.

    • Search Google Scholar
    • Export Citation
  • Harder, M., and H. Fischer, 1999: Sea ice dynamics in the Weddell Sea simulated with an optimized model. J. Geophys. Res., 104, 11 15111 162, https://doi.org/10.1029/1999JC900047.

    • Search Google Scholar
    • Export Citation
  • Heimbach, P., D. Menemenlis, M. Losch, J.-M. Campin, and C. Hill, 2010: On the formulation of sea-ice models. Part 2: Lessons from multi-year adjoint sea ice export sensitivities through the Canadian Arctic Archipelago. Ocean Modell., 33, 145158, https://doi.org/10.1016/j.ocemod.2010.02.002.

    • Search Google Scholar
    • Export Citation
  • Herman, A., 2016: Discrete-Element bonded-particle Sea Ice model DESIgn, version 1.3a—Model description and implementation. Geosci. Model Dev., 9, 12191241, https://doi.org/10.5194/gmd-9-1219-2016.

    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815846, https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., and J. E. Walsh, 1982: On modeling seasonal and interannual fluctuations of Arctic sea ice. J. Phys. Oceanogr., 12, 15141523, https://doi.org/10.1175/1520-0485(1982)012<1514:OMSAIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hopkins, M. A., and A. S. Thorndike, 2006: Floe formation in Arctic sea ice. J. Geophys. Res., 111, C11S23, https://doi.org/10.1029/2005JC003352.

    • Search Google Scholar
    • Export Citation
  • Hopkins, M. A., S. Frankenstein, and A. S. Thorndike, 2004: Formation of an aggregate scale in Arctic sea ice. J. Geophys. Res., 109, C01032, https://doi.org/10.1029/2003JC001855.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., B. Cornuelle, A. Kohl, and D. Stammer, 2005: Treating strong adjoint sensitivities in tropical eddy-permitting variational data assimilation. Quart. J. Roy. Meteor. Soc., 131, 36593682, https://doi.org/10.1256/qj.05.97.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK.2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and J. K. Dukowicz, 1997: An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 18491867, https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos Sea ice model—Documentation and software user’s manual, version 4.1. Los Alamos National Laboratory Doc. LA-CC-06-012, 76 pp., http://csdms.colorado.edu/w/images/CICE_documentation_and_software_user's_manual.pdf.

  • Juricke, S., and T. Jung, 2014: Influence of stochastic sea ice parametrization on climate and the role of atmosphere–sea ice–ocean interaction. Philos. Trans. Roy. Soc., A372, 20130283, https://doi.org/10.1098/rsta.2013.0283.

    • Search Google Scholar
    • Export Citation
  • Juricke, S., P. Lemke, R. Timmermann, and T. Rackow, 2013: Effects of stochastic ice strength perturbation on Arctic finite element sea ice modeling. J. Climate, 26, 37853802, https://doi.org/10.1175/JCLI-D-12-00388.1.

    • Search Google Scholar
    • Export Citation
  • Kauker, F., T. Kaminski, M. Karcher, R. Giering, R. Gerdes, and M. Voßbeck, 2009: Adjoint analysis of the 2007 all time Arctic sea-ice minimum. Geophys. Res. Lett., 36, L03707, https://doi.org/10.1029/2008GL036323.

    • Search Google Scholar
    • Export Citation
  • Koldunov, N. V., and Coauthors, 2019: Fast EVP solutions in a high-resolution sea ice model. J. Adv. Model. Earth Syst., 11, 12691284, https://doi.org/10.1029/2018MS001485.

    • Search Google Scholar
    • Export Citation
  • Komarov, A. S., and D. G. Barber, 2014: Sea ice motion tracking from sequential dual-polarization RADARSAT-2 images. IEEE Trans. Geosci. Remote Sens., 52, 121136, https://doi.org/10.1109/TGRS.2012.2236845.

    • Search Google Scholar
    • Export Citation
  • König Beatty, C., and D. M. Holland, 2010: Modeling landfast sea ice by adding tensile strength. J. Phys. Oceanogr., 40, 185198, https://doi.org/10.1175/2009JPO4105.1.

    • Search Google Scholar
    • Export Citation
  • Kreyscher, M., M. Harder, and P. Lemke, 1997: First results of the Sea-Ice Model Intercomparison Project (SIMIP). Ann. Glaciol., 25, 811, https://doi.org/10.3189/S0260305500013719.

    • Search Google Scholar
    • Export Citation
  • Kreyscher, M., M. Harder, P. Lemke, and G. M. Flato, 2000: Results of the Sea Ice Model Intercomparison Project: Evaluation of sea ice rheology schemes for use in climate simulations. J. Geophys. Res., 105, 11 29911 320, https://doi.org/10.1029/1999JC000016.

    • Search Google Scholar
    • Export Citation
  • Laxon, S. W., and Coauthors, 2013: CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett., 40, 732737, https://doi.org/10.1002/grl.50193.

    • Search Google Scholar
    • Export Citation
  • Le Dimet, F.-X., 1982: A general formalism of variational analysis. CIMMS Rep. 22, 34 pp.

  • Le Dimet, F.-X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A, 97110, https://doi.org/10.1111/j.1600-0870.1986.tb00459.x.

    • Search Google Scholar
    • Export Citation
  • Lemieux, J.-F., and F. Dupont, 2020: On the calculation of normalized viscous-plastic sea ice stress. Geosci. Model Dev., 13, 17631769, https://doi.org/10.5194/gmd-13-1763-2020.

    • Search Google Scholar
    • Export Citation
  • Lemieux, J.-F., B. Tremblay, S. Thomas, J. Sedláček, and L. A. Mysak, 2008: Using the preconditioned generalized minimum residual (GMRES) method to solve the sea-ice momentum equation. J. Geophys. Res., 113, C10004, https://doi.org/10.1029/2007JC004680.

    • Search Google Scholar
    • Export Citation
  • Lemieux, J.-F., D. A. Knoll, B. Tremblay, D. M. Holland, and M. Losch, 2012: A comparison of the Jacobian-free Newton–Krylov method and the EVP model for solving the sea ice momentum equation with a viscous-plastic formulation: A serial algorithm study. J. Comput. Phys., 231, 59265944, https://doi.org/10.1016/j.jcp.2012.05.024.

    • Search Google Scholar
    • Export Citation
  • Lemieux, J.-F., L. B. Tremblay, F. Dupont, M. Plante, G. C. Smith, and D. Dumont, 2015: A basal stress parameterization for modeling landfast ice. J. Geophys. Res. Oceans, 120, 31573173, https://doi.org/10.1002/2014JC010678.

    • Search Google Scholar
    • Export Citation
  • Lemieux, J.-F., F. Dupont, P. Blain, F. Roy, G. C. Smith, and G. M. Flato, 2016: Improving the simulation of landfast ice by combining tensile strength and parameterization for grounded ridges. J. Geophys. Res. Oceans, 121, 73547368, https://doi.org/10.1002/2016JC012006.

    • Search Google Scholar
    • Export Citation
  • Lewis, J. M., and J. C. Derber, 1985: The use of adjoint equations to solve a variational adjustment problem with advective constraints. Tellus, 37A, 309322, https://doi.org/10.3402/tellusa.v37i4.11675.

    • Search Google Scholar
    • Export Citation
  • Losch, M., A. Fuchs, J.-F. Lemieux, and A. Vanselow, 2014: A parallel Jacobian-free Newton–Krylov solver for a coupled sea ice ocean model. J. Comput. Phys., 257, 901911, https://doi.org/10.1016/j.jcp.2013.09.026.

    • Search Google Scholar
    • Export Citation
  • Massonnet, F., H. Goosse, T. Fichefet, and F. Counillon, 2014: Calibration of sea ice dynamic parameters in an ocean-sea ice model using an ensemble Kalman filter. J. Geophys. Res. Oceans, 119, 41684184, https://doi.org/10.1002/2013JC009705.

    • Search Google Scholar
    • Export Citation
  • Miller, P. A., S. W. Laxon, D. L. Feltham, and D. J. Cresswell, 2006: Optimization of a sea ice model using basinwide observations of Arctic sea ice thickness, extent, and velocity. J. Climate, 19, 10891108, https://doi.org/10.1175/JCLI3648.1.

    • Search Google Scholar
    • Export Citation
  • Nguyen, A. T., D. Menemenlis, and R. Kwok, 2011: Arctic ice-ocean simulation with optimized model parameters: Approach and assessment. J. Geophys. Res., 116, C04025, https://doi.org/10.1029/2010JC006573.

    • Search Google Scholar
    • Export Citation
  • Nichols, N. K., 2003: Data assimilation: Aims and basic concepts. Data Assimilation for the Earth System, R. Swinbank, V. Shutyaev, and W. A. Lahoz, Eds., NATO Science Series, Vol. 26, Springer, 9–22.

  • Nichols, N. K., 2010: Mathematical concepts of data assimilation. Data Assimilation: Making Sense of Observations, W. Lahoz, B. Khattatov, and R. Menard, Eds., Springer, 13–39.

  • Nitta, T., 1975: Some analyses of observing systems simulation experiments in relation to the First GARP Global Experiment. GARP Working Group on Numerical Experimentation Rep. 10, 35 pp.

  • Panteleev, G., M. Yaremchuk, J. N. Stroh, O. P. Francis, and R. Allard, 2020: Parameter optimization in sea ice models with elastic–viscoplastic rheology. Cryosphere, 14, 44274451, https://doi.org/10.5194/tc-14-4427-2020.

    • Search Google Scholar
    • Export Citation
  • Penenko, V. V., 1981: Methods of Numerical Simulation of Atmospheric Processes. Gidrometeoizdat, 350 pp.

  • Saad, Y., 2003: Iterative Methods for Sparse Linear Systems. SIAM, 520 pp., https://doi.org/10.1137/1.9780898718003.

  • Stroh, J. N., G. Panteleev, M. Yaremchuk, O. Francis, and R. Allard, 2019: Toward optimization of rheology in sea ice models through data assimilation. J. Atmos. Oceanic Technol., 36, 23652382, https://doi.org/10.1175/JTECH-D-18-0239.1.

    • Search Google Scholar
    • Export Citation
  • Sumata, H., F. Kauker, M. Karcher, and R. Gerdes, 2019: Simultaneous parameter optimization of an Arctic sea ice–ocean model by a genetic algorithm. Mon. Wea. Rev., 147, 18991926, https://doi.org/10.1175/MWR-D-18-0360.1.

    • Search Google Scholar
    • Export Citation
  • Tilling, R. L., A. Ridout, and A. Shepher, 2018: Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data. Adv. Space Res., 62, 12031225, https://doi.org/10.1016/j.asr.2017.10.051.

    • Search Google Scholar
    • Export Citation
  • Toyota, T., and N. Kimura, 2018: An examination of the sea ice rheology for seasonal ice zones based on ice drift and thickness observations. J. Geophys. Res. Oceans, 123, 14061428, https://doi.org/10.1002/2017JC013627.

    • Search Google Scholar
    • Export Citation
  • Tremblay, L.-B., and L. A. Mysak, 1997: Modeling sea ice as a granular material, including the dilatancy effect. J. Phys. Oceanogr., 27, 23422360, https://doi.org/10.1175/1520-0485(1997)027<2342:MSIAAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tremblay, L.-B., and M. Hakakian, 2006: Estimating the sea ice compressive strength from satellite derived sea ice drift and NCEP reanalysis data. J. Phys. Oceanogr., 36, 21652172, https://doi.org/10.1175/JPO2954.1.

    • Search Google Scholar
    • Export Citation
  • Ungermann, M., and M. Losch, 2018: An observationally based evaluation of subgrid scale ice thickness distributions simulated in a large-scale sea ice-ocean model of the Arctic Ocean. J. Geophys. Res. Oceans, 123, 80528067, https://doi.org/10.1029/2018JC014022.

    • Search Google Scholar
    • Export Citation
  • Uotila, P., S. O’Farrell, S. J. Marsland, and D. Bi, 2012: A sea-ice sensitivity study with a global ocean-ice model. Ocean Modell., 51, 118, https://doi.org/10.1016/j.ocemod.2012.04.002.

    • Search Google Scholar
    • Export Citation
  • Vancoppenolle, M., T. Fichefet, H. Goosse, S. Bouillon, G. Madec, and M. A. M. Maqueda, 2009: Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Modell., 27, 3353, https://doi.org/10.1016/j.ocemod.2008.10.005.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 442 pp.

  • Zhang, J., and W. D. Hibler III, 1997: On an efficient numerical method for modeling sea ice dynamics. J. Geophys. Res., 102, 86918702, https://doi.org/10.1029/96JC03744.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and D. A. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131, 845861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 266 266 8
Full Text Views 60 60 3
PDF Downloads 73 73 4

Reconstruction of the Rheological Parameters in a Sea Ice Model with Viscoplastic Rheology

Gleb PanteleevaNaval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Gleb Panteleev in
Current site
Google Scholar
PubMed
Close
,
Max YaremchukaNaval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Max Yaremchuk in
Current site
Google Scholar
PubMed
Close
, and
Oceana FrancisbUniversity of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Oceana Francis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We analyzed the feasibility of the reconstruction of the spatially varying rheological parameters through the four-dimensional variational data assimilation of the sea ice velocity, thickness, and concentration into the viscoplastic (VP) sea ice model. The feasibility is assessed via idealized variational data assimilation experiments with synthetic observations configured for a 1-day data assimilation window in a 50 × 40 rectangular basin forced by the open boundaries, winds, and ocean currents and should be viewed as a first step in the developing the similar algorithms which can be applied for the more advanced sea ice models. It is found that “true” spatial variability (∼5.8 kN m−2) of the internal maximum ice strength parameter P* can be retrieved from observations with reasonable accuracy of 2.3–5.3 kN m−2, when an observation of the sea ice state is available daily in each grid point. Similar relative accuracy was achieved for the reconstruction of the compactness strength parameter α. The yield curve eccentricity e is found to be controlled by the data with less efficiency, but the spatial mean value of e could be still reconstructed with a similar degree of confidence. The accuracy of P*, α, and e retrievals is found to increase in regions of stronger ice velocity convergence, providing prospects for better processing of the observations collected during the recent MOSAiC experiment. The accuracy of the retrievals strongly depends on the number of the control variables characterizing the rheological parameter fields.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gleb Panteleev, gleb.panteleev@nrlssc.navy.mil

Abstract

We analyzed the feasibility of the reconstruction of the spatially varying rheological parameters through the four-dimensional variational data assimilation of the sea ice velocity, thickness, and concentration into the viscoplastic (VP) sea ice model. The feasibility is assessed via idealized variational data assimilation experiments with synthetic observations configured for a 1-day data assimilation window in a 50 × 40 rectangular basin forced by the open boundaries, winds, and ocean currents and should be viewed as a first step in the developing the similar algorithms which can be applied for the more advanced sea ice models. It is found that “true” spatial variability (∼5.8 kN m−2) of the internal maximum ice strength parameter P* can be retrieved from observations with reasonable accuracy of 2.3–5.3 kN m−2, when an observation of the sea ice state is available daily in each grid point. Similar relative accuracy was achieved for the reconstruction of the compactness strength parameter α. The yield curve eccentricity e is found to be controlled by the data with less efficiency, but the spatial mean value of e could be still reconstructed with a similar degree of confidence. The accuracy of P*, α, and e retrievals is found to increase in regions of stronger ice velocity convergence, providing prospects for better processing of the observations collected during the recent MOSAiC experiment. The accuracy of the retrievals strongly depends on the number of the control variables characterizing the rheological parameter fields.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gleb Panteleev, gleb.panteleev@nrlssc.navy.mil
Save