• Alpers, W., and B. Brümmer, 1994: Atmospheric boundary layer rolls observed by the synthetic aperture radar aboard the ERS-1 satellite. J. Geophys. Res., 99, 12 61312 621, https://doi.org/10.1029/94JC00421.

    • Search Google Scholar
    • Export Citation
  • Asgarimehr, M., V. Zavorotny, J. Wickert, and S. Reich, 2018: Can GNSS reflectometry detect precipitation over oceans? Geophys. Res. Lett., 45, 12 58512 592, https://doi.org/10.1029/2018GL079708.

    • Search Google Scholar
    • Export Citation
  • Asharaf, S., D. E. Waliser, D. J. Posselt, C. S. Ruf, C. Zhang, and A. W. Putra, 2021: CYGNSS ocean surface wind validation in the tropics. J. Atmos. Oceanic Technol., 38, 711724, https://doi.org/10.1175/JTECH-D-20-0079.1.

    • Search Google Scholar
    • Export Citation
  • Balasubramaniam, R., and C. S. Ruf, 2018: Improved calibration of CYGNSS measurements for downbursts in the intertropical convergence zone. 2018 IEEE Int. Geosciences and Remote Sensing Symp., Valencia, Spain, IEEE, 39873990, https://doi.org/10.1109/IGARSS.2018.8517571.

  • Bhate, J., A. Munsi, A. Kesarkar, G. Kutty, and S. K. Deb, 2021: Impact of assimilation of satellite retrieved ocean surface winds on the tropical cyclone simulations over the north Indian Ocean. Earth Space Sci., 8, e2020EA001517, https://doi.org/10.1029/2020EA001517.

  • Bourlès, B., and Coauthors, 2008: The PIRATA program: History, accomplishments, and future directions. Bull. Amer. Meteor. Soc., 89, 11111126, https://doi.org/10.1175/2008BAMS2462.1.

    • Search Google Scholar
    • Export Citation
  • Boutin, J., and J. Etcheto, 1990: Seasat scatterometer versus scanning multichannel microwave radiometer wind speeds: A comparison on a global scale. J. Geophys. Res., 95, 22 27522 288, https://doi.org/10.1029/JC095iC12p22275.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. H. Freilich, 2005: Scatterometer-based assessment of 10-m wind analyses from the operational ECMWF and NCEP numerical weather prediction models. Mon. Wea. Rev., 133, 409429, https://doi.org/10.1175/MWR-2861.1.

    • Search Google Scholar
    • Export Citation
  • Clarizia, M. P., and C. S. Ruf, 2016: Wind speed retrieval algorithm for the Cyclone Global Navigation Satellite System (CYGNSS) mission. IEEE Trans. Geosci. Remote Sens., 54, 44194432, https://doi.org/10.1109/TGRS.2016.2541343.

    • Search Google Scholar
    • Export Citation
  • Clarizia, M. P., V. Zavarotny, and C. S. Ruf, 2018: Level 2 wind speed retrieval. CYGNSS Algorithm Theoretical Basis Doc., 101 pp.

  • CYGNSS, 2018: CYGNSS level 2 science data record, version 2.1. PO.DAAC, accessed 20 September 2018, https://doi.org/10.5067/CYGNS-L2X21.

  • CYGNSS, 2020: CYGNSS level 2 science data record, version 3.0. PO.DAAC, accessed 26 January 2021, https://doi.org/10.5067/CYGNS-L2X30.

  • CYGNSS, 2021: CYGNSS level 2 climate data record, version 1.1. PO.DAAC, accessed 14 January 2021, https://doi.org/10.5067/CYGNS-L2C11.

  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, https://doi.org/10.1175/JPO-D-12-0173.1.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • Gleason, S., M. M. Al-Khaldi, C. S. Ruf, D. S. McKague, T. Wang, and A. Russel, 2022: Characterizing and mitigating digital sampling effects on the CYGNSS level 1 calibration. IEEE Trans. Geosci. Remote Sens., 60, 112, https://doi.org/10.1109/TGRS.2021.3120026.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., E. F. Stocker, D. T. Bolvin, E. J. Nelkin, and J. Tan, 2019: GPM IMERG final precipitation L3 half hourly 0.1 degree × 0.1 degree, version 06. GES DISC, accessed 1 January 2018, https://doi.org/10.5067/GPM/IMERG/3B-HH/06.

  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Li, X., J. R. Mecikalski, and T. J. Lang, 2020: A study on assimilation of CYGNSS wind speed data for tropical convection during 2018 January MJO. Remote Sens., 12, 1243, https://doi.org/10.3390/rs12081243.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., 1984: The effects of the variations in sea surface temperature and atmospheric stability in the estimation of average wind speed by SEASAT-SASS. J. Phys. Oceanogr., 14, 392401, https://doi.org/10.1175/1520-0485(1984)014<0392:TEOTVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • May, J. C., and M. A. Bourassa, 2011: Quantifying variance due to temporal and spatial difference between ship and satellite winds. J. Geophys. Res., 116, C08013, https://doi.org/10.1029/2010JC006931.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean-Global Atmosphere (TOGA) observing system: A decade of progress. J. Geophys. Res., 103, 14 16914 240, https://doi.org/10.1029/97JC02906.

  • McPhaden, M. J., and Coauthors, 2009: RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90, 459480, https://doi.org/10.1175/2008BAMS2608.1.

    • Search Google Scholar
    • Export Citation
  • Pascual, D., M. P. Clarizia, and C. S. Ruf, 2021: Improved CYGNSS wind speed retrieval using significant wave height correction. Remote Sens., 13, 4313, https://doi.org/10.3390/rs13214313.

    • Search Google Scholar
    • Export Citation
  • Rennie, M. P., and L. Isaksen, 2020: The NWP impact of Aeolus level-2B winds at ECMWF. ECMWF Tech. Memo. 864, 110 pp., https://doi.org/10.21957/alift7mhr.

  • Rennie, M. P., L. Isaksen, F. Weiler, J. de Kloe, T. Kanitz, and O. Reitebuch, 2021: The impact of Aeolus wind retrievals in ECMWF global weather forecasts. Quart. J. Roy. Meteor. Soc., 147, 35553586, https://doi.org/10.1002/qj.4142.

    • Search Google Scholar
    • Export Citation
  • Ruf, C., and Coauthors, 2016: CYGNSS handbook. University of Michigan Doc., 155 pp.

  • Ruf, C., and R. Balasubramaniam, 2019: Development of the CYGNSS geophysical model function for wind speed. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 12, 6677, https://doi.org/10.1109/JSTARS.2018.2833075.

    • Search Google Scholar
    • Export Citation
  • Ruf, C., S. Gleason, and D. S. McKague, 2019a: Assessment of CYGNSS wind speed retrieval uncertainty. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 12, 8797, https://doi.org/10.1109/JSTARS.2018.2825948.

  • Ruf, C., S. Asharaf, R. Balasubramaniam, S. Gleason, T. Lang, D. McKague, D. Twigg, and D. E. Waliser, 2019b: In-orbit performance of the constellation of CYGNSS hurricane satellites. Bull. Amer. Meteor. Soc., 100, 20092023, https://doi.org/10.1175/BAMS-D-18-0337.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Search Google Scholar
    • Export Citation
  • Said, F., Z. Jelenak, J. Park, S. Soisuvarn, and P. S. Chang, 2019: A ‘track-wise’ wind retrieval algorithm for the CYGNSS mission. 2019 IEEE Int. Geoscience and Remote Sensing Symp., Yokohama, Japan, IEEE, 87118714, https://doi.org/10.1109/IGARSS.2019.8898099.

  • Said, F., Z. Jelenak, J. Park, and P. S. Chang, 2021: The NOAA track-wise wind retrieval algorithm and product assessment for CYGNSS. IEEE Trans. Geosci. Remote Sens., 60, 4202524, https://doi.org/10.1109/TGRS.2021.3087426.

    • Search Google Scholar
    • Export Citation
  • Short, E., C. L. Vincent, and T. P. Lane, 2019: Diurnal cycle of surface winds in the Maritime Continent observed through satellite scatterometry. Mon. Wea. Rev., 147, 20232044, https://doi.org/10.1175/MWR-D-18-0433.1.

    • Search Google Scholar
    • Export Citation
  • SOCD, 2020: NOAA CYGNSS level 2 science wind speed 25-km product, version 1.1. PO.DAAC, accessed 4 October 2020, https://doi.org/10.5067/CYGNN-22511.

  • Waliser, D. E., and X. Jiang, 2015: Tropical meteorology: Intertropical convergence zones (ITCZ). Encyclopedia of Atmospheric Sciences. 2nd ed. Vol. 6, Academic Press, 121131.

  • Wang, T., C. S. Ruf, B. Block, D. S. McKague, and S. Gleason, 2019: Design and performance of a GPS constellation power monitor system for improved CYGNSS L1B calibration. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 12, 2636, https://doi.org/10.1109/JSTARS.2018.2867773.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zavorotny, V. U., and A. G. Voronovich, 2000: Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Trans. Geosci. Remote Sens., 38, 951964, https://doi.org/10.1109/36.841977.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 593 593 68
Full Text Views 192 192 14
PDF Downloads 206 206 13

Updates on CYGNSS Ocean Surface Wind Validation in the Tropics

Shakeel AsharafaJoint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, California
bJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Shakeel Asharaf in
Current site
Google Scholar
PubMed
Close
,
Derek J. PosseltbJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Derek J. Posselt in
Current site
Google Scholar
PubMed
Close
,
Faozi SaidcNOAA/NESDIS/Center for Satellite Applications and Research, College Park, Maryland
dGlobal Science and Technology, Inc., Greenbelt, Maryland

Search for other papers by Faozi Said in
Current site
Google Scholar
PubMed
Close
, and
Christopher S. RufeUniversity of Michigan, Ann Arbor, Michigan

Search for other papers by Christopher S. Ruf in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global Navigation Satellite System Reflectometry (GNSS-R)-based wind retrieval techniques use the global positioning system (GPS) signals scattered from the ocean surface in the forward direction, and can potentially work in all weather conditions. An overview of recent progress made in the Cyclone Global Navigation Satellite System (CYGNSS) level-2 surface wind products is given. To this end, four publicly released CYGNSS surface wind products—Science Data Record (SDR) v2.1, SDR v3.0, Climate Data Record (CDR) v1.1, and science wind speed product NOAA v1.1—are validated quantitatively against high-quality data from tropical buoy arrays. The latest released CYGNSS wind products (e.g., CDR v1.1, SDR v3.0, NOAA v1.1), as compared with these tropical buoy data, significantly outperform the SDR v2.1. Moreover, the uncertainty among these products is found to be less than 2 m s−1 root-mean-squared difference, meeting the NASA science mission level-1 uncertainty requirement for wind speeds below 20 m s−1. The quality of the CYGNSS wind is further assessed under different precipitation conditions in low winds, and in large-scale convective regions. Results show that the presence of rain appears to cause a slightly positive wind speed bias in all CYGNSS data. Nonetheless, the outcomes are encouraging for the recently released CYGNSS wind products in general, and for CYGNSS data in regions with precipitating deep convection. The overall comparison indicates a significant improvement in wind speed quality and sample size when going from the older version to any of the newer datasets.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shakeel Asharaf, shakeel.asharaf@jpl.nasa.gov

Abstract

Global Navigation Satellite System Reflectometry (GNSS-R)-based wind retrieval techniques use the global positioning system (GPS) signals scattered from the ocean surface in the forward direction, and can potentially work in all weather conditions. An overview of recent progress made in the Cyclone Global Navigation Satellite System (CYGNSS) level-2 surface wind products is given. To this end, four publicly released CYGNSS surface wind products—Science Data Record (SDR) v2.1, SDR v3.0, Climate Data Record (CDR) v1.1, and science wind speed product NOAA v1.1—are validated quantitatively against high-quality data from tropical buoy arrays. The latest released CYGNSS wind products (e.g., CDR v1.1, SDR v3.0, NOAA v1.1), as compared with these tropical buoy data, significantly outperform the SDR v2.1. Moreover, the uncertainty among these products is found to be less than 2 m s−1 root-mean-squared difference, meeting the NASA science mission level-1 uncertainty requirement for wind speeds below 20 m s−1. The quality of the CYGNSS wind is further assessed under different precipitation conditions in low winds, and in large-scale convective regions. Results show that the presence of rain appears to cause a slightly positive wind speed bias in all CYGNSS data. Nonetheless, the outcomes are encouraging for the recently released CYGNSS wind products in general, and for CYGNSS data in regions with precipitating deep convection. The overall comparison indicates a significant improvement in wind speed quality and sample size when going from the older version to any of the newer datasets.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shakeel Asharaf, shakeel.asharaf@jpl.nasa.gov

Supplementary Materials

    • Supplemental Materials (PDF 622 KB)
Save