• Adebisi, N., A. L. Balogun, T. H. Min, and A. Tella, 2021: Advances in estimating sea level rise: A review of tide gauge, satellite altimetry and spatial data science approaches. Ocean Coastal Manage., 208, 105632, https://doi.org/10.1016/j.ocecoaman.2021.105632.

    • Search Google Scholar
    • Export Citation
  • Aldarias, A., J. Gomez-Enri, I. Laiz, B. Tejedor, S. Vignudelli, and P. Cipollini, 2020: Validation of Sentinel-3A SRAL coastal sea level data at high posting rate: 80 Hz. IEEE Trans. Geosci. Remote Sens., 58, 38093821, https://doi.org/10.1109/TGRS.2019.2957649.

    • Search Google Scholar
    • Export Citation
  • Altaf, M. U., M. El Gharamti, A. W. Heemink, and I. Hoteit, 2013: A reduced adjoint approach to variational data assimilation. Comput. Methods Appl. Mech. Eng., 254, 113, https://doi.org/10.1016/j.cma.2012.10.003.

    • Search Google Scholar
    • Export Citation
  • Anderson, E., and H. Järvinen, 1999: Variational quality control. Quart. J. Roy. Meteor. Soc., 125, 697722, https://doi.org/10.1002/qj.49712555416.

    • Search Google Scholar
    • Export Citation
  • Anzenhofer, M., C. K. Shum, and M. Rentsh, 1999: Coastal altimetry and applications. Ohio State University Tech. Rep. 464, 40 pp., https://earthsciences.osu.edu/sites/earthsciences.osu.edu/files/report-464.pdf.

    • Search Google Scholar
    • Export Citation
  • Asch, M., M. Bocquet, and M. Nodet, 2016: Data Assimilation: Methods, Algorithms, and Applications. Society for Industrial and Applied Mathematics, 306 pp.

  • Ayoub, N., 2006: Estimation of boundary values in a North Atlantic circulation model using an adjoint method. Ocean Modell., 12, 319347, https://doi.org/10.1016/j.ocemod.2005.06.003.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., and P. C. Mcintosh, 1982: Open ocean modeling as an inverse problem: Tidal theory. J. Phys. Oceanogr., 12, 10041018, https://doi.org/10.1175/1520-0485(1982)012<1004:OOMAAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Birol, F., and Coauthors, 2016: Coastal applications from nadir altimetry: Example of the X-TRACK regional products. Adv. Space Res., 59, 936953, https://doi.org/10.1016/j.asr.2016.11.005.

    • Search Google Scholar
    • Export Citation
  • Cao, A. Z., Z. Guo, and X. Q. Lu, 2012: Inversion of two-dimensional tidal open boundary conditions of M2 constituent in the Bohai and Yellow Seas. Chin. J. Oceanol. Limnol., 30, 868875, https://doi.org/10.1007/s00343-012-1185-9.

    • Search Google Scholar
    • Export Citation
  • Cazenave, A., and W. Llovel, 2010: Contemporary sea level rise. Annu. Rev. Mar. Sci., 2, 145173, https://doi.org/10.1146/annurev-marine-120308-081105.

    • Search Google Scholar
    • Export Citation
  • Chelil, S., H. Oubanas, H. Henine, I. Gejadze, P. O. Malaterre, and J. Tournebize, 2022: Variational data assimilation to improve subsurface drainage model parameters. J. Hydrol., 610, 128006, https://doi.org/10.1016/j.jhydrol.2022.128006.

    • Search Google Scholar
    • Export Citation
  • Chelton, D., Ed., 2001: Report of the High-Resolution Ocean Topography Science Working Group Meeting. Oregon State University Rep., 224 pp.

  • Chertok, D. L., and R. W. Lardner, 1996: Variational data assimilation for a nonlinear hydraulic model. Appl. Math. Modell., 20, 675682, https://doi.org/10.1016/0307-904X(96)00048-0.

    • Search Google Scholar
    • Export Citation
  • Cho, K. H., Y. Pachepsky, M. Ligaray, Y. Kwon, and K. H. Kim, 2020: Data assimilation in surface water quality modeling: A review. Water Res., 186, 116307, https://doi.org/10.1016/j.watres.2020.116307.

    • Search Google Scholar
    • Export Citation
  • Cipollini, P., F. M. Calafat, S. Jevrejeva, A. Melet, and P. Prandi, 2017: Monitoring sea level in the coastal zone with satellite altimetry and tide gauges. Surv. Geophys., 38, 3357, https://doi.org/10.1007/s10712-016-9392-0.

    • Search Google Scholar
    • Export Citation
  • Das, S. K., and R. W. Lardner, 1992: Variational parameter estimation for a two‐dimensional numerical tidal model. Int. J. Numer. Methods Fluids, 15, 313327, https://doi.org/10.1002/fld.1650150305.

    • Search Google Scholar
    • Export Citation
  • Desportes, C., E. Obligis, and L. Eymard, 2007: On the wet tropospheric correction for altimetry coastal regions. IEEE Trans. Geosci. Remote Sens., 45, 21392149, https://doi.org/10.1109/TGRS.2006.888967.

    • Search Google Scholar
    • Export Citation
  • Duan, B., W. Zhang, X. Yang, H. Dai, and Y. Yu, 2017: Assimilation of typhoon wind field retrieved from scatterometer and SAR based on the Huber norm quality control. Remote Sens., 9, 987, https://doi.org/10.3390/rs9100987.

    • Search Google Scholar
    • Export Citation
  • Freitag, M. A., 2020: Numerical linear algebra in data assimilation. GAMM-Mitt., 43, e202000014, https://doi.org/10.1002/gamm.202000014.

    • Search Google Scholar
    • Export Citation
  • Gao, X., Z. Wei, X. Lv, Y. Wang, and G. Fang, 2015: Numerical study of tidal dynamics in the South China Sea with adjoint method. Ocean Modell., 92, 101114, https://doi.org/10.1016/j.ocemod.2015.05.010.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and P. Malanotte-Rizzoli, 1991: Data assimilation in meteorology and oceanography. Adv. Geophys., 33, 141266, https://doi.org/10.1016/S0065-2687(08)60442-2.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., A. Cao, and X. Lv, 2012: Inverse estimation of open boundary conditions in the Bohai Sea. Math. Probl. Eng., 2012, 628061, https://doi.org/10.1155/2012/628061.

    • Search Google Scholar
    • Export Citation
  • He, Y., X. Lu, Z. Qiu, and J. Zhao, 2004: Shallow water tidal constituents in the Bohai Sea and the Yellow Sea from a numerical adjoint model with TOPEX/Poseidon altimeter data. Cont. Shelf Res., 24, 15211529, https://doi.org/10.1016/j.csr.2004.05.008.

    • Search Google Scholar
    • Export Citation
  • He, Z., D. Yang, Y. Wang, and B. Yin, 2022: Impact of 4D-Var data assimilation on modelling of the East China Sea dynamics. Ocean Modell., 176, 102044, https://doi.org/10.1016/j.ocemod.2022.102044.

    • Search Google Scholar
    • Export Citation
  • Heemink, A. W., E. E. A. Mouthaan, M. R. T. Roest, E. A. H. Vollebregt, K. B. Robaczewska, and M. Verlaan, 2002: Inverse 3D shallow water flow modelling of the continental shelf. Cont. Shelf Res., 22, 465484, https://doi.org/10.1016/S0278-4343(01)00071-1.

    • Search Google Scholar
    • Export Citation
  • Jevrejeva, S., J. C. Moore, A. Grinsted, A. P. Matthews, and G. Spada, 2014: Trends and acceleration in global and regional sea levels since 1807. Global Planet. Change, 113, 1122, https://doi.org/10.1016/j.gloplacha.2013.12.004.

    • Search Google Scholar
    • Export Citation
  • Jiang, D., H. Chen, G. Jin, and X. Lv, 2018: Estimating smoothly varying open boundary conditions for a 3D internal tidal model with an improved independent point scheme. J. Atmos. Oceanic Technol., 35, 12991311, https://doi.org/10.1175/JTECH-D-17-0155.1.

    • Search Google Scholar
    • Export Citation
  • Kevlahan, N. K. R., R. Khan, and B. Protas, 2019: On the convergence of data assimilation for the one-dimensional shallow water equations with sparse observations. Adv. Comput. Math., 45, 31953216, https://doi.org/10.1007/s10444-019-09733-6.

    • Search Google Scholar
    • Export Citation
  • Khairuddin, M. A., A. H. M. Din, and A. H. Omar, 2019: Sea level impact due to El Nino and La Nina phenomena from multi-mission satellite altimetry data over Malaysian seas. First Global Civil Engineering Conf., Kuala Lumpur, Malaysia, GCEC, 771–792, https://doi.org/10.1007/978-981-10-8016-6_57.

  • Khan, R. A., and N. K. R. Kevlahan, 2022: Data assimilation for the two-dimensional shallow water equations: Optimal initial conditions for tsunami modelling. Ocean Modell., 174, 102009, https://doi.org/10.1016/j.ocemod.2022.102009.

    • Search Google Scholar
    • Export Citation
  • King, M. A., and L. Padman, 2005: Accuracy assessment of ocean tide models around Antarctica. Geophys. Res. Lett., 32, L23608, https://doi.org/10.1029/2005GL023901.

    • Search Google Scholar
    • Export Citation
  • Kotz, S., T. Kozubowski, and K. Podgórski, 2001: Astronomy and the biological and environmental sciences. The Laplace Distribution and Generalizations, Springer, 309–313.

  • Lardner, R. W., 1993: Optimal control of open boundary conditions for a numerical tidal model. Comput. Methods Appl. Mech. Eng., 102, 367387, https://doi.org/10.1016/0045-7825(93)90055-3.

    • Search Google Scholar
    • Export Citation
  • Lardner, R. W., A. H. Al-Rabeh, and N. Gunay, 1993: Optimal estimation of parameters for a two-dimensional hydrodynamical model of the Arabian Gulf. J. Geophys. Res., 98, 18 22918 242, https://doi.org/10.1029/93JC01411.

    • Search Google Scholar
    • Export Citation
  • Lawless, A. S., 2013: Variational data assimilation for very large environmental problems. Large Scale Inverse Problems, De Gruyter, 55–90, https://doi.org/10.1515/9783110282269.55.

  • Le Dimet, F. X. L., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observation: Theoretical aspects. Tellus, 38A, 97110, https://doi.org/10.3402/tellusa.v38i2.11706.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., and O. Hammon, 1988: Objective quality control of observations using Bayesian methods. Theory, and a practical implementation. Quart. J. Roy. Meteor. Soc., 114, 515543, https://doi.org/10.1002/qj.49711448012.

    • Search Google Scholar
    • Export Citation
  • Lu, X., and J. Zhang, 2006: Numerical study on spatially varying bottom friction coefficient of a 2D tidal model with adjoint method. Cont. Shelf Res., 26, 19051923, https://doi.org/10.1016/j.csr.2006.06.007.

    • Search Google Scholar
    • Export Citation
  • Lyard, F. H., 1999: Data assimilation in a wave equation: A variational representer approach for the Grenoble tidal model. J. Comput. Phys., 149, 131, https://doi.org/10.1006/jcph.1998.5966.

    • Search Google Scholar
    • Export Citation
  • Marcos, M., and Coauthors, 2019: Coastal sea level and related fields from existing observing systems. Surv. Geophys., 40, 12931317, https://doi.org/10.1007/s10712-019-09513-3.

    • Search Google Scholar
    • Export Citation
  • Matsuda, T., and Y. Miyatake, 2021: Generalization of partitioned Runge–Kutta methods for adjoint systems. J. Comput. Appl. Math., 388, 113308, https://doi.org/10.1016/j.cam.2020.113308.

    • Search Google Scholar
    • Export Citation
  • Míguez, B. M., R. Le Roy, and G. Wöppelmann, 2008: The use of radar tide gauges to measure variations in sea level along the French coast. J. Coastal Res., 24, 6168, https://doi.org/10.2112/06-0787.1.

    • Search Google Scholar
    • Export Citation
  • Pan, H., Z. Guo, and X. Lv, 2017: Inversion of tidal open boundary conditions of the M2 constituent in the Bohai and Yellow Seas. J. Atmos. Oceanic Technol., 34, 16611672, https://doi.org/10.1175/JTECH-D-16-0238.1.

    • Search Google Scholar
    • Export Citation
  • Peng, F., and X. Deng, 2020: Validation of Sentinel-3A SAR mode sea level anomalies around the Australian coastal region. Remote Sens. Environ., 237, 111548, https://doi.org/10.1016/j.rse.2019.111548.

    • Search Google Scholar
    • Export Citation
  • Qian, S., D. Wang, J. Zhang, and C. Li, 2021: Adjoint estimation and interpretation of spatially varying bottom friction coefficients of the M2 tide for a tidal model in the Bohai, Yellow and East China Seas with multi-mission satellite observations. Ocean Modell., 161, 101783, https://doi.org/10.1016/j.ocemod.2021.101783.

    • Search Google Scholar
    • Export Citation
  • Rao, V., A. Sandu, M. Ng, and E. D. Nino-Ruiz, 2017: Robust data assimilation using L1 and Huber norms. SIAM J. Sci. Comput., 39, B548B570, https://doi.org/10.1137/15M1045910.

    • Search Google Scholar
    • Export Citation
  • Roh, S., M. G. Genton, M. Jun, I. Szunyogh, and I. Hoteit, 2013: Observation quality control with a robust ensemble Kalman filter. Mon. Wea. Rev., 141, 44144428, https://doi.org/10.1175/MWR-D-13-00091.1.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y., 1958: An objective analysis based on the variational method. J. Meteor. Soc. Japan, 36, 7788, https://doi.org/10.2151/jmsj1923.36.3_77.

    • Search Google Scholar
    • Export Citation
  • Seiler, U., 1993: Estimation of open boundary conditions with the adjoint method. J. Geophys. Res., 98, 22 85522 870, https://doi.org/10.1029/93JC02376.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 2004: Estimating air-sea fluxes of heat, freshwater, and momentum through global ocean data assimilation. J. Geophys. Res., 109, C05023, https://doi.org/10.1029/2003JC002082.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2014: Accuracy assessment of global barotropic ocean tide models. Rev. Geophys., 52, 243282, https://doi.org/10.1002/2014RG000450.

    • Search Google Scholar
    • Export Citation
  • Stehly, L., B. Fry, M. Campillo, N. M. Shapiro, J. Guilbert, L. Boschi, and D. Giardini, 2009: Tomography of the Alpine region from observations of seismic ambient noise. Geophys. J. Int., 178, 338350, https://doi.org/10.1111/j.1365-246X.2009.04132.x.

    • Search Google Scholar
    • Export Citation
  • Storto, A., P. Oddo, A. Cipollone, I. Mirouze, and B. Lemieux-Dudon, 2018: Extending an oceanographic variational scheme to allow for affordable hybrid and four-dimensional data assimilation. Ocean Modell., 128, 6786, https://doi.org/10.1016/j.ocemod.2018.06.005.

    • Search Google Scholar
    • Export Citation
  • Tavolato, C., and L. Isaksen, 2015: On the use of a Huber norm for observation quality control in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 141, 15141527, https://doi.org/10.1002/qj.2440.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., and W. C. Thacker, 1989: An optimal-control/adjoint-equations approach to studying the oceanic general circulation. J. Phys. Oceanogr., 19, 14711485, https://doi.org/10.1175/1520-0485(1989)019<1471:AOCEAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Van Leeuwen, P. J., 2010: Nonlinear data assimilation in geosciences: An extremely efficient particle filter. Quart. J. Roy. Meteor. Soc., 136, 19911999, https://doi.org/10.1002/qj.699.

    • Search Google Scholar
    • Export Citation
  • Wang, D., J. Zhang, and L. Mu, 2021: A feature point scheme for improving estimation of the temporally varying bottom friction coefficient in tidal models using adjoint method. Ocean Eng., 220, 108481, https://doi.org/10.1016/j.oceaneng.2020.108481.

    • Search Google Scholar
    • Export Citation
  • Wöppelmann, G., and M. Marcos, 2016: Vertical land motion as a key to understanding sea level change and variability. Rev. Geophys., 54, 6492, https://doi.org/10.1002/2015RG000502.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and J. J. O’Brien, 1992: On the initial condition in parameter estimation. J. Phys. Oceanogr., 22, 13611364, https://doi.org/10.1175/1520-0485(1992)022<1361:oticip>2.0.co;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, A., E. Wei, and B. B. Parker, 2003: Optimal estimation of tidal open boundary conditions using predicted tides and adjoint data assimilation technique. Cont. Shelf Res., 23, 10551070, https://doi.org/10.1016/S0278-4343(03)00105-5.

    • Search Google Scholar
    • Export Citation
  • Zheng, X., R. Mayerle, Q. Xing, and J. M. Fernández Jaramillo, 2016: Adjoint free four-dimensional variational data assimilation for a storm surge model of the German North Sea. Ocean Dyn., 66, 10371050, https://doi.org/10.1007/s10236-016-0962-y.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 222 222 35
Full Text Views 55 55 9
PDF Downloads 76 76 15

A Method Using the Huber Function for Inversion of Tidal Open Boundary Conditions of the M2 Constituent in the Bohai and Yellow Seas

Yuchun GaoaFrontier Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
bPhysical Oceanography Laboratory, Ocean University of China, Qingdao, China
cQingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Yuchun Gao in
Current site
Google Scholar
PubMed
Close
,
Shengyi JiaoaFrontier Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
bPhysical Oceanography Laboratory, Ocean University of China, Qingdao, China
cQingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Shengyi Jiao in
Current site
Google Scholar
PubMed
Close
,
Kai FudSchool of Mathematical Sciences, Ocean University of China, Qingdao, China

Search for other papers by Kai Fu in
Current site
Google Scholar
PubMed
Close
,
Xueying ZengdSchool of Mathematical Sciences, Ocean University of China, Qingdao, China

Search for other papers by Xueying Zeng in
Current site
Google Scholar
PubMed
Close
, and
Xianqing LvaFrontier Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
bPhysical Oceanography Laboratory, Ocean University of China, Qingdao, China
cQingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Xianqing Lv in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The adjoint assimilation method has been widely used in various ocean models, and a series of technical schemes have been developed at the same time. Open boundary conditions (OBCs) in the two-dimensional (2D) tidal model of the M2 tidal constituent in the Bohai and the Yellow Seas (BYS) were inverted successfully using the adjoint assimilation methods in previous studies. However, the cost function in the adjoint assimilation method usually used the L2 norm in the past, which is difficult to maintain the robustness of the method when there are outliers. Meanwhile, using the L1 norm with strong robustness will shield the outliers’ information fully. Therefore, we propose a new scheme that replaces the L2 norm with the Huber function to improve the robustness of the adjoint assimilation method and absorb the data’s useful information to some extent. This scheme was verified in the ideal experiments in which magnitudes of the misfit vector were significantly reduced and the quality control (QC) process was simplified consequently. In the practical experiments, the introduction of the Huber function improved the accuracy of inversion in the inshore area using mixed data containing tide gauges and satellite altimetry. With this scheme, the root-mean-square errors (RMSEs) between the estimation and the observed values at tide gauge stations were reduced from ∼8 cm with the original scheme to ∼6 cm. Testing the new scheme in more complex models and how it might be affected remains a topic for future study.

Significance Statement

The adjoint assimilation method has been effectively applied in various ocean models. The cost function in the adjoint assimilation is usually in the form of the L2 norm, which presents poor robustness. By using the Huber function instead of the L2 norm as the cost function, we proposed a new scheme that can perfectly handle the potential outliers in data and noticeably improve the robustness of the adjoint assimilation method. The new method was applied to the inversion of tidal open boundary conditions of the M2 constituent in the Bohai and the Yellow Seas. Both the ideal and practical experiments verified the effectiveness of the developed scheme.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kai Fu, kfu@ouc.edu.cn; Xueying Zeng, zxying@ouc.edu.cn

Abstract

The adjoint assimilation method has been widely used in various ocean models, and a series of technical schemes have been developed at the same time. Open boundary conditions (OBCs) in the two-dimensional (2D) tidal model of the M2 tidal constituent in the Bohai and the Yellow Seas (BYS) were inverted successfully using the adjoint assimilation methods in previous studies. However, the cost function in the adjoint assimilation method usually used the L2 norm in the past, which is difficult to maintain the robustness of the method when there are outliers. Meanwhile, using the L1 norm with strong robustness will shield the outliers’ information fully. Therefore, we propose a new scheme that replaces the L2 norm with the Huber function to improve the robustness of the adjoint assimilation method and absorb the data’s useful information to some extent. This scheme was verified in the ideal experiments in which magnitudes of the misfit vector were significantly reduced and the quality control (QC) process was simplified consequently. In the practical experiments, the introduction of the Huber function improved the accuracy of inversion in the inshore area using mixed data containing tide gauges and satellite altimetry. With this scheme, the root-mean-square errors (RMSEs) between the estimation and the observed values at tide gauge stations were reduced from ∼8 cm with the original scheme to ∼6 cm. Testing the new scheme in more complex models and how it might be affected remains a topic for future study.

Significance Statement

The adjoint assimilation method has been effectively applied in various ocean models. The cost function in the adjoint assimilation is usually in the form of the L2 norm, which presents poor robustness. By using the Huber function instead of the L2 norm as the cost function, we proposed a new scheme that can perfectly handle the potential outliers in data and noticeably improve the robustness of the adjoint assimilation method. The new method was applied to the inversion of tidal open boundary conditions of the M2 constituent in the Bohai and the Yellow Seas. Both the ideal and practical experiments verified the effectiveness of the developed scheme.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kai Fu, kfu@ouc.edu.cn; Xueying Zeng, zxying@ouc.edu.cn
Save