Developing a New Oxygen Atlas of the World’s Oceans Using Data Interpolating Variational Analysis

Christopher J. Roach aInstitute For Marine and Antarctic Studies, Hobart, Tasmania, Australia

Search for other papers by Christopher J. Roach in
Current site
Google Scholar
PubMed
Close
and
Nathaniel L. Bindoff aInstitute For Marine and Antarctic Studies, Hobart, Tasmania, Australia
bAustralian Antarctic Program Partnership, Institute For Marine and Antarctic Studies, Hobart, Tasmania, Australia
cAustralian Centre of Excellence in Antarctic Science, Institute For Marine and Antarctic Studies, Hobart, Tasmania, Australia
dAustralian Research Council in Climate Extremes, Institute For Marine and Antarctic Studies, Hobart, Tasmania, Australia

Search for other papers by Nathaniel L. Bindoff in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We present a new global oxygen atlas. This atlas uses all of the available full water column profiles of oxygen, salinity, and temperature available as part of the World Ocean Database released in 2018. Instead of optimal interpolation, we use the Data Interpolating Variational Analysis (DIVA) approach to map the available profiles onto 108 depth levels between the surface and 6800 m, covering more than 99% of ocean volume. This 1/2° × 1/2° atlas covers the period 1955–2018 in 1-yr intervals. The DIVA method has significant benefits over traditional optimal interpolation. It allows the explicit inclusion of advection and boundary constraints, thus offering improvements in the representations of oxygen, salinity, and temperature in regions of strong flow and near coastal boundaries. We demonstrate these benefits of this mapping approach with some examples from this atlas. We can explore the regional and temporal variations of oxygen in the global oceans. Preliminary analyses confirm earlier analyses that the oxygen minimum zone in the eastern Pacific Ocean has expanded and intensified. Oxygen inventory changes between 1970 and 2010 are assessed and compared against prior studies. We find that the full ocean oxygen inventory decreased by 0.84% ± 0.42%. For this period, temperature-driven solubility changes explain about 21% of the oxygen decline over the full water column; in the upper 100 m, solubility changes can explain all of the oxygen decrease; for the 100–600 m depth range, it can explain only 29%, 19% between 600 and 1000 m, and just 11% in the deep ocean.

Significance Statement

The purpose of this study is to create a new oxygen atlas of the world’s oceans using a technique that better represents the effects of ocean currents and topographic boundaries, and to investigate how oxygen in the ocean has changed over recent decades. We find the total quantity of oxygen in the world’s oceans has decreased by 0.84% since 1970, similar to previous studies. We also examine how much of this change can be explained by changes in water temperature; we find that this can explain all the changes in the upper 100 m but only 21% of the oxygen decline over the whole water column.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher J. Roach, christopher.roach@utas.edu.au

Abstract

We present a new global oxygen atlas. This atlas uses all of the available full water column profiles of oxygen, salinity, and temperature available as part of the World Ocean Database released in 2018. Instead of optimal interpolation, we use the Data Interpolating Variational Analysis (DIVA) approach to map the available profiles onto 108 depth levels between the surface and 6800 m, covering more than 99% of ocean volume. This 1/2° × 1/2° atlas covers the period 1955–2018 in 1-yr intervals. The DIVA method has significant benefits over traditional optimal interpolation. It allows the explicit inclusion of advection and boundary constraints, thus offering improvements in the representations of oxygen, salinity, and temperature in regions of strong flow and near coastal boundaries. We demonstrate these benefits of this mapping approach with some examples from this atlas. We can explore the regional and temporal variations of oxygen in the global oceans. Preliminary analyses confirm earlier analyses that the oxygen minimum zone in the eastern Pacific Ocean has expanded and intensified. Oxygen inventory changes between 1970 and 2010 are assessed and compared against prior studies. We find that the full ocean oxygen inventory decreased by 0.84% ± 0.42%. For this period, temperature-driven solubility changes explain about 21% of the oxygen decline over the full water column; in the upper 100 m, solubility changes can explain all of the oxygen decrease; for the 100–600 m depth range, it can explain only 29%, 19% between 600 and 1000 m, and just 11% in the deep ocean.

Significance Statement

The purpose of this study is to create a new oxygen atlas of the world’s oceans using a technique that better represents the effects of ocean currents and topographic boundaries, and to investigate how oxygen in the ocean has changed over recent decades. We find the total quantity of oxygen in the world’s oceans has decreased by 0.84% since 1970, similar to previous studies. We also examine how much of this change can be explained by changes in water temperature; we find that this can explain all the changes in the upper 100 m but only 21% of the oxygen decline over the whole water column.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher J. Roach, christopher.roach@utas.edu.au
Save
  • Andrews, O. D., N. L. Bindoff, P. R. Halloran, T. Ilyina, and C. Le Quéré, 2013: Detecting an external influence on recent changes in oceanic oxygen using an optimal fingerprinting method. Biogeosciences, 10, 17991813, https://doi.org/10.5194/bg-10-1799-2013.

    • Search Google Scholar
    • Export Citation
  • Barth, A., J.-M. Beckers, C. Troupin, A. Alvera-Azcárate, and L. Vandenbulcke, 2014: divand-1.0: n-dimensional variational data analysis for ocean observations. Geosci. Model Dev., 7, 225241, https://doi.org/10.5194/gmd-7-225-2014.

    • Search Google Scholar
    • Export Citation
  • Belgacem, M., and Coauthors, 2021: Climatological distribution of dissolved inorganic nutrients in the western Mediterranean Sea (1981–2017). Earth Syst. Sci. Data, 13, 59155949, https://doi.org/10.5194/essd-13-5915-2021.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and C. Wunsch, 1992: Comparison of synoptic and climatologically mapped sections in the South Pacific Ocean. J. Climate, 5, 631645, https://doi.org/10.1175/1520-0442(1992)005<0631:COSACM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and T. J. McDougall, 2000: Decadal changes along an Indian Ocean section at 32°S and their interpretation. J. Phys. Oceanogr., 30, 12071222, https://doi.org/10.1175/1520-0485(2000)030<1207:DCAAIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2022: Changing ocean, marine ecosystems, and dependent communities. The Ocean and Cryosphere in a Changing Climate, Cambridge University Press, 447–588, https://doi.org/10.1017/9781009157964.007.

  • Bittig, H. C., and A. Körtzinger, 2015: Tackling oxygen optode drift: Near-surface and in-air oxygen optode measurements on a float provide an accurate in situ reference. J. Atmos. Oceanic Technol., 32, 15361543, https://doi.org/10.1175/JTECH-D-14-00162.1.

    • Search Google Scholar
    • Export Citation
  • Bograd, S. J., and Coauthors, 2015: Changes in source waters to the Southern California Bight. Deep-Sea Res. II, 112, 4252, https://doi.org/10.1016/j.dsr2.2014.04.009.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and Coauthors, 2018: World Ocean Database 2018. NOAA Atlas NESDIS 87, 207 pp., https://www.ncei.noaa.gov/sites/default/files/2020-04/wod_intro_0.pdf.

  • Bretherton, F. P., R. E. Davis, and C. Fandry, 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep Sea Res. Oceanogr. Abstr., 23, 559582, https://doi.org/10.1016/0011-7471(76)90001-2.

    • Search Google Scholar
    • Export Citation
  • Buchanan, P. J., R. J. Matear, Z. Chase, S. J. Phipps, and N. L. Bindoff, 2018: Dynamic biological functioning important for simulating and stabilizing ocean biogeochemistry. Global Biogeochem. Cycles, 32, 565593, https://doi.org/10.1002/2017GB005753.

    • Search Google Scholar
    • Export Citation
  • Bushinsky, S. M., S. R. Emerson, S. C. Riser, and D. D. Swift, 2016: Accurate oxygen measurements on modified Argo floats using in situ air calibrations. Limnol. Oceanogr. Methods, 14, 491505, https://doi.org/10.1002/lom3.10107.

    • Search Google Scholar
    • Export Citation
  • Capet, A., C. Troupin, J. Carstensen, M. Grégoire, and J.-M. Beckers, 2014: Untangling spatial and temporal trends in the variability of the Black Sea cold intermediate layer and mixed layer depth using the DIVA detrending procedure. Ocean Dyn., 64, 315324, https://doi.org/10.1007/s10236-013-0683-4.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., T. A. Davis, W. W. Hager, and S. Rajamanickam, 2008: Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Software, 35, 22, https://doi.org/10.1145/1391989.1391995.

    • Search Google Scholar
    • Export Citation
  • Claustre, H., K. S. Johnson, and Y. Takeshita, 2020: Observing the global ocean with Biogeochemical-Argo. Annu. Rev. Mar. Sci., 12, 2348, https://doi.org/10.1146/annurev-marine-010419-010956.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., J. S. Whitaker, and P. D. Sardeshmukh, 2006: Feasibility of a 100-year reanalysis using only surface pressure data. Bull. Amer. Meteor. Soc., 87, 175190, https://doi.org/10.1175/BAMS-87-2-175.

    • Search Google Scholar
    • Export Citation
  • Culberson, C. H., 1991: Dissolved oxygen. WHP Operations and Methods Doc., 15 pp., https://cchdo.github.io/hdo-assets/documentation/manuals/pdf/91_1/culber2.pdf.

  • Davis, T. A., and W. W. Hager, 2009: Dynamic supernodes in sparse Cholesky update/downdate and triangular solves. ACM Trans. Math. Software, 35, 27, https://doi.org/10.1145/1462173.1462176.

    • Search Google Scholar
    • Export Citation
  • Dickson, A. G., 1994: Determination of dissolved oxygen in sea water by Winkler titration. WHP Operations and Methods Doc., 13 pp., https://cchdo.github.io/hdo-assets/documentation/manuals/pdf/91_1/dickson2.pdf.

  • Doglioni, F., R. Ricker, B. Rabe, A. Barth, C. Troupin, and T. Kanzow, 2023: Sea surface height anomaly and geostrophic current velocity from altimetry measurements over the Arctic Ocean (2011–2020). Earth Syst. Sci. Data, 15, 225263, https://doi.org/10.5194/essd-15-225-2023.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19 47719 498, https://doi.org/10.1029/2000JC900063.

    • Search Google Scholar
    • Export Citation
  • Fukumori, I., P. Heimbach, R. M. Ponte, and C. Wunsch, 2018: A dynamically consistent, multivariable ocean climatology. Bull. Amer. Meteor. Soc., 99, 21072128, https://doi.org/10.1175/BAMS-D-17-0213.1.

    • Search Google Scholar
    • Export Citation
  • Gamo, T., and Y. Horibe, 1980: Precise determination of dissolved gases in sea water by shipboard gas chromatography. Bull. Chem. Soc. Japan, 53, 28392842, https://doi.org/10.1246/bcsj.53.2839.

    • Search Google Scholar
    • Export Citation
  • Garcia, H. E., T. P. Boyer, O. K. B. Ricardo, A. Locarnini, and M. M. Zweng, 2018: World Ocean Database 2018: User’s manual (pre-release). NOAA Atlas NESDIS 83, 111 pp., https://www.ncei.noaa.gov/sites/default/files/2020-04/wodreadme.pdf.

  • Gregg, W. W., and C. S. Rousseaux, 2019: Global ocean primary production trends in the modern ocean color satellite record (1998–2015). Environ. Res. Lett., 14, 124011, https://doi.org/10.1088/1748-9326/ab4667.

    • Search Google Scholar
    • Export Citation
  • Helm, K. P., N. L. Bindoff, and J. A. Church, 2011: Observed decreases in oxygen content of the global ocean. Geophys. Res. Lett., 38, L23602, https://doi.org/10.1029/2011GL049513.

    • Search Google Scholar
    • Export Citation
  • Henson, S. A., J. L. Sarmiento, J. P. Dunne, L. Bopp, I. Lima, S. C. Doney, J. John, and C. Beaulieu, 2010: Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621640, https://doi.org/10.5194/bg-7-621-2010.

    • Search Google Scholar
    • Export Citation
  • Ito, T., 2022: Optimal interpolation of global dissolved oxygen: 1965–2015. Geosci. Data J., 9, 167176, https://doi.org/10.1002/gdj3.130.

    • Search Google Scholar
    • Export Citation
  • Ito, T., S. Minobe, M. C. Long, and C. Deutsch, 2017: Upper ocean O2 trends: 1958–2015. Geophys. Res. Lett., 44, 42144223, https://doi.org/10.1002/2017GL073613.

    • Search Google Scholar
    • Export Citation
  • Janson, L., W. Fithian, and T. J. Hastie, 2015: Effective degrees of freedom: A flawed metaphor. Biometrika, 102, 479485, https://doi.org/10.1093/biomet/asv019.

    • Search Google Scholar
    • Export Citation
  • Langdon, C., 2010: Determination of dissolved oxygen in seawater by Winkler titration using the amperometric technique. The GO-SHIP repeat hydrography manual: A collection of expert reports and guidelines, IOCCP Rep. 14, 18 pp., https://www.go-ship.org/Manual/Langdon_Amperometric_oxygen.pdf.

  • Levitus, S., 1983: Climatological atlas of the world ocean. Eos, Trans. Amer. Geophys. Union, 64, 962963, https://doi.org/10.1029/EO064i049p00962-02.

    • Search Google Scholar
    • Export Citation
  • Liang, X., M. Spall, and C. Wunsch, 2017: Global ocean vertical velocity from a dynamically consistent ocean state estimate. J. Geophys. Res. Oceans, 122, 82088224, https://doi.org/10.1002/2017JC012985.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., M. S. McCartney, and W. B. Owens, 1994: Anomalous anomalies in averaged hydrographic data. J. Phys. Oceanogr., 24, 26242638, https://doi.org/10.1175/1520-0485(1994)024<2624:AAIAHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luyten, J. R., M. Fieux, and J. Gonella, 1980: Equatorial currents in the western Indian Ocean. Science, 209, 600603, https://doi.org/10.1126/science.209.4456.600.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox. SCOR/IAPSO WG127 Doc., 34 pp., https://www.teos-10.org/pubs/Getting_Started.pdf.

  • Montgomery, H., N. Thom, and A. Cockburn, 1964: Determination of dissolved oxygen by the Winkler method and the solubility of oxygen in pure water and sea water. J. Appl. Chem., 14, 280296, https://doi.org/10.1002/jctb.5010140704.

    • Search Google Scholar
    • Export Citation
  • Oschlies, A., P. Brandt, L. Stramma, and S. Schmidtko, 2018: Drivers and mechanisms of ocean deoxygenation. Nat. Geosci., 11, 467473, https://doi.org/10.1038/s41561-018-0152-2.

    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., G. C. Johnson, L. D. Talley, B. M. Sloyan, S. E. Wijffels, W. Smethie, S. Mecking, and K. Katsumata, 2019: Unabated bottom water warming and freshening in the South Pacific Ocean. J. Geophys. Res. Oceans, 124, 17781794, https://doi.org/10.1029/2018JC014775.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., J. R. Dunn, and J. L. Wilkin, 2002: Ocean interpolation by four-dimensional weighted least squares—Application to the waters around Australasia. J. Atmos. Oceanic Technol., 19, 13571375, https://doi.org/10.1175/1520-0426(2002)019<1357:OIBFDW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riser, S. C., D. Swift, and R. Drucker, 2018: Profiling floats in SOCCOM: Technical capabilities for studying the Southern Ocean. J. Geophys. Res. Oceans, 123, 40554073, https://doi.org/10.1002/2017JC013419.

    • Search Google Scholar
    • Export Citation
  • Roach, C. J., and N. L. Bindoff, 2023: Roach and Bindoff global temperature, salinity and oxygen atlas (shipboard data 1955–2018) v1.0. IMAS, https://doi.org/10.25959/hk4q-b239.

  • Sasano, D., Y. Takatani, N. Kosugi, T. Nakano, T. Midorikawa, and M. Ishii, 2015: Multidecadal trends of oxygen and their controlling factors in the western North Pacific. Global Biogeochem. Cycles, 29, 935956, https://doi.org/10.1002/2014GB005065.

    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., L. Stramma, and M. Visbeck, 2017: Decline in global oceanic oxygen content during the past five decades. Nature, 542, 335339, https://doi.org/10.1038/nature21399.

    • Search Google Scholar
    • Export Citation
  • Storto, A., S. Dobricic, S. Masina, and P. D. Pietro, 2011: Assimilating along-track altimetric observations through local hydrostatic adjustment in a global ocean variational assimilation system. Mon. Wea. Rev., 139, 738754, https://doi.org/10.1175/2010MWR3350.1.

    • Search Google Scholar
    • Export Citation
  • Talley, L., and Coauthors, 2016: Changes in ocean heat, carbon content, and ventilation: A review of the first decade of GO-SHIP global repeat hydrography. Annu. Rev. Mar. Sci., 8, 185215, https://doi.org/10.1146/annurev-marine-052915-100829.

    • Search Google Scholar
    • Export Citation
  • Tchebichef, P., 1867: Des valeurs moyennes. J. Math. Pures Appl., 12, 177184.

  • Tellinghuisen, J., 2001: Statistical error propagation. J. Phys. Chem., 105A, 39173921, https://doi.org/10.1021/jp003484u.

  • Terada, M., and S. Minobe, 2018: Projected sea level rise, gyre circulation and water mass formation in the western North Pacific: CMIP5 inter-model analysis. Climate Dyn., 50, 47674782, https://doi.org/10.1007/s00382-017-3902-8.

    • Search Google Scholar
    • Export Citation
  • Troupin, C., F. Machín, M. Ouberdous, D. Sirjacobs, A. Barth, and J.-M. Beckers, 2010: High-resolution climatology of the northeast Atlantic using Data-Interpolating Variational Analysis (DIVA). J. Geophys. Res., 115, C08005, https://doi.org/10.1029/2009JC005512.

    • Search Google Scholar
    • Export Citation
  • Troupin, C., and Coauthors, 2012: Generation of analysis and consistent error fields using the Data Interpolating Variational Analysis (DIVA). Ocean Modell., 52–53, 90101, https://doi.org/10.1016/j.ocemod.2012.05.002.

    • Search Google Scholar
    • Export Citation
  • Troupin, C., M. Ouberdous, D. Sirjacobs, A. Alvera-Azcárate, A. Barth, M.-E. Toussaint, S. Watelet, and J.-M. Beckers, 2017: gher-ulg/Diva-User-Guide: v1.0. Zenodo, https://doi.org/10.5281/zenodo.836723.

  • Verdy, A., and M. R. Mazloff, 2017: A data assimilating model for estimating Southern Ocean biogeochemistry. J. Geophys. Res. Oceans, 122, 69686988, https://doi.org/10.1002/2016JC012650.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., F. Primeau, T. DeVries, and M. Holzer, 2013: Recent changes in the ventilation of the Southern Oceans. Science, 339, 568570, https://doi.org/10.1126/science.1225411.

    • Search Google Scholar
    • Export Citation
  • Whitney, F. A., H. J. Freeland, and M. Robert, 2007: Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific. Prog. Oceanogr., 75, 179199, https://doi.org/10.1016/j.pocean.2007.08.007.

    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., N. L. Bindoff, and J. A. Church, 2001: Freshwater and heat changes in the North and South Pacific Oceans between the 1960s and 1985–94. J. Climate, 14, 16131633, https://doi.org/10.1175/1520-0442(2001)014<1613:FAHCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 442 pp.

  • Wunsch, C., P. Heimbach, R. M. Ponte, and I. Fukumori, 2009: The global general circulation of the ocean estimated by the ECCO-Consortium. Oceanography, 22 (2), 88103, https://doi.org/10.5670/oceanog.2009.41.

    • Search Google Scholar
    • Export Citation
  • Wüst, G., 1936: Deep circulation in the expanse of the North Atlantic Ocean. Int. Hydrogr. Rev., 13, 2331.

  • Yang, C., S. Masina, and A. Storto, 2017: Historical ocean reanalyses (1900–2010) using different data assimilation strategies. Quart. J. Roy. Meteor. Soc., 143, 479493, https://doi.org/10.1002/qj.2936.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1263 1263 248
Full Text Views 99 99 53
PDF Downloads 96 96 60