Three-Dimensional Variational Multi-Doppler Wind Retrieval over Complex Terrain

Ting-Yu Cha aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Ting-Yu Cha in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6292-8483
and
Michael M. Bell bDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Michael M. Bell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The interaction of airflow with complex terrain has the potential to significantly amplify extreme precipitation events and modify the structure and intensity of precipitating cloud systems. However, understanding and forecasting such events is challenging, in part due to the scarcity of direct in situ measurements. Doppler radar can provide the capability to monitor extreme rainfall events over land, but our understanding of airflow modulated by orographic interactions remains limited. The SAMURAI software is a three-dimensional variational data assimilation (3DVAR) technique that uses the finite element approach to retrieve kinematic and thermodynamic fields. The analysis has high fidelity to observations when retrieving flows over a flat surface, but the capability of imposing topography as a boundary constraint is not previously implemented. Here, we implement the immersed boundary method (IBM) as pseudo-observations at their native coordinates in SAMURAI to represent the topographic forcing and surface impermeability. In this technique, neither data interpolation onto a Cartesian grid nor explicit physical constraint integration during the cost function minimization is needed. Furthermore, the physical constraints are treated as pseudo-observations, offering the flexibility to adjust the strength of the boundary condition. A series of observing simulation sensitivity experiments (OSSEs) using a full-physics model and radar emulator simulating rainfall from Typhoon Chanthu (2021) over Taiwan are conducted to evaluate the retrieval accuracy and parameter settings. The OSSE results show that the strength of the IBM constraints can impact the overall wind retrievals. Analysis from real radar observations further demonstrates that the improved retrieval technique can advance scientific analyses for the underlying dynamics of orographic precipitation using radar observations.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ting-Yu Cha, tycha@ucar.edu

Abstract

The interaction of airflow with complex terrain has the potential to significantly amplify extreme precipitation events and modify the structure and intensity of precipitating cloud systems. However, understanding and forecasting such events is challenging, in part due to the scarcity of direct in situ measurements. Doppler radar can provide the capability to monitor extreme rainfall events over land, but our understanding of airflow modulated by orographic interactions remains limited. The SAMURAI software is a three-dimensional variational data assimilation (3DVAR) technique that uses the finite element approach to retrieve kinematic and thermodynamic fields. The analysis has high fidelity to observations when retrieving flows over a flat surface, but the capability of imposing topography as a boundary constraint is not previously implemented. Here, we implement the immersed boundary method (IBM) as pseudo-observations at their native coordinates in SAMURAI to represent the topographic forcing and surface impermeability. In this technique, neither data interpolation onto a Cartesian grid nor explicit physical constraint integration during the cost function minimization is needed. Furthermore, the physical constraints are treated as pseudo-observations, offering the flexibility to adjust the strength of the boundary condition. A series of observing simulation sensitivity experiments (OSSEs) using a full-physics model and radar emulator simulating rainfall from Typhoon Chanthu (2021) over Taiwan are conducted to evaluate the retrieval accuracy and parameter settings. The OSSE results show that the strength of the IBM constraints can impact the overall wind retrievals. Analysis from real radar observations further demonstrates that the improved retrieval technique can advance scientific analyses for the underlying dynamics of orographic precipitation using radar observations.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ting-Yu Cha, tycha@ucar.edu
Save
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, https://doi.org/10.1175/JAS-D-11-0276.1.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. Dixon, W.-C. Lee, B. Javornik, J. C. DeHart, and T.-Y. Cha, 2021: nsf-lrose/lrose-elle: lrose-elle stable final release 20210312 (lrose-elle-20210312). Zenodo, https://doi.org/10.5281/zenodo.5523312.

  • Bousquet, O., and M. Chong, 1998: A multiple-Doppler synthesis and continuity adjustment technique (MUSCAT) to recover wind components from Doppler radar measurements. J. Atmos. Oceanic Technol., 15, 343359, https://doi.org/10.1175/1520-0426(1998)015<0343:AMDSAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cha, T.-Y., 2023: Investigation of the dynamics of tropical cyclone precipitation structure using radar observations and numerical modeling. Ph.D. thesis, Colorado State University, 125 pp.

  • Cha, T.-Y., and M. M. Bell, 2021: Comparison of single-Doppler and multiple-Doppler wind retrievals in Hurricane Matthew (2016). Atmos. Meas. Tech., 14, 35233539, https://doi.org/10.5194/amt-14-3523-2021.

    • Search Google Scholar
    • Export Citation
  • Cha, T.-Y., M. M. Bell, W.-C. Lee, and A. J. DesRosiers, 2020: Polygonal eyewall asymmetries during the rapid intensification of Hurricane Michael (2018). Geophys. Res. Lett., 47, e2020GL087919, https://doi.org/10.1029/2020GL087919.

    • Search Google Scholar
    • Export Citation
  • Chien, F.-C., and H.-C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res., 116, D05104, https://doi.org/10.1029/2010JD015092.

    • Search Google Scholar
    • Export Citation
  • Chong, M., and S. Cosma, 2000: A formulation of the continuity equation of MUSCAT for either flat or complex terrain. J. Atmos. Oceanic Technol., 17, 15561565, https://doi.org/10.1175/1520-0426(2000)017<1556:AFOTCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chong, M., and Coauthors, 2000: Real-time wind synthesis from Doppler radar observations during the Mesoscale Alpine Programme. Bull. Amer. Meteor. Soc., 81, 29532962, https://doi.org/10.1175/1520-0477(2000)081<2953:RTWSFD>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606, https://doi.org/10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Collis, S., A. Protat, and K.-S. Chung, 2010: The effect of radial velocity gridding artifacts on variationally retrieved vertical velocities. J. Atmos. Oceanic Technol., 27, 12391246, https://doi.org/10.1175/2010JTECHA1402.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1979: Dual-Doppler radar coverage area as a function of measurement accuracy and spatial resolution. J. Appl. Meteor., 18, 12291233, https://doi.org/10.1175/1520-0450-18.9.1229.

    • Search Google Scholar
    • Export Citation
  • del Moral, A., T. M. Weckwerth, T. Rigo, M. M. Bell, and M. C. Llasat, 2020: C-band dual-Doppler retrievals in complex terrain: Improving the knowledge of severe storm dynamics in Catalonia. Remote Sens., 12, 2930, https://doi.org/10.3390/rs12182930.

    • Search Google Scholar
    • Export Citation
  • Dennis, J. M., A. H. Baker, B. Dobbins, M. M. Bell, J. Sun, Y. Kim, and T.-Y. Cha, 2022: Enabling efficient execution of a variational data assimilation application. Int. J. High Perform. Comput. Appl., 37, 101114, https://doi.org/10.1177/10943420221119801.

    • Search Google Scholar
    • Export Citation
  • Foerster, A. M., M. M. Bell, P. A. Harr, and S. C. Jones, 2014: Observations of the eyewall structure of Typhoon Sinlaku (2008) during the transformation stage of extratropical transition. Mon. Wea. Rev., 142, 33723392, https://doi.org/10.1175/MWR-D-13-00313.1.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., and M. Hagen, 2004: Evaluation of wind vectors measured by a bistatic Doppler radar network. J. Atmos. Oceanic Technol., 21, 18401854, https://doi.org/10.1175/JTECH-1679.1.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., F. D. Marks Jr., and F. Roux, 1995: Comparison of three airborne Doppler sampling techniques with airborne in situ wind observations in Hurricane Gustav (1990). J. Atmos. Oceanic Technol., 12, 171181, https://doi.org/10.1175/1520-0426(1995)012<0171:COTADS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 21282142, https://doi.org/10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457469, https://doi.org/10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Georgis, J. F., F. Roux, and P. H. Hildebrand, 2000: Observation of precipitating systems over complex orography with meteorological Doppler radars: A feasibility study. Meteor. Atmos. Phys., 72, 185202, https://doi.org/10.1007/s007030050015.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and C. K. Mueller, 1985: Evaluation of meteorological airborne Doppler radar. Part I: Dual-Doppler analyses of air motions. J. Atmos. Oceanic Technol., 2, 362380, https://doi.org/10.1175/1520-0426(1985)002<0362:EOMADR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., C. A. Walther, C. L. Frush, J. Testud, and F. Baudin, 1994: The ELDORA/ASTRAIA airborne Doppler weather radar: Goals, design, and first field tests. Proc. IEEE, 82, 18731890, https://doi.org/10.1109/5.338076.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and Coauthors, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar: High-resolution observations from TOGA COARE. Bull. Amer. Meteor. Soc., 77, 213232, https://doi.org/10.1175/1520-0477(1996)077<0213:TEADWR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, https://doi.org/10.1029/2011RG000365.

  • Kirshbaum, D. J., and D. R. Durran, 2005: Observations and modeling of banded orographic convection. J. Atmos. Sci., 62, 14631479, https://doi.org/10.1175/JAS3417.1.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., M. desJardins, and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22, 14871503, https://doi.org/10.1175/1520-0450(1983)022<1487:AIBOMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liou, Y.-C., and Y.-J. Chang, 2009: A variational multiple-Doppler radar three-dimensional wind synthesis method and its impacts on thermodynamic retrieval. Mon. Wea. Rev., 137, 39924010, https://doi.org/10.1175/2009MWR2980.1.

    • Search Google Scholar
    • Export Citation
  • Liou, Y.-C., S.-F. Chang, and J. Sun, 2012: An application of the immersed boundary method for recovering the three-dimensional wind fields over complex terrain using multiple-Doppler radar data. Mon. Wea. Rev., 140, 16031619, https://doi.org/10.1175/MWR-D-11-00151.1.

    • Search Google Scholar
    • Export Citation
  • Lundquist, K. A., F. K. Chow, and J. K. Lundquist, 2010: An immersed boundary method for the Weather Research and Forecasting Model. Mon. Wea. Rev., 138, 796817, https://doi.org/10.1175/2009MWR2990.1.

    • Search Google Scholar
    • Export Citation
  • Martinez, J., M. M. Bell, R. F. Rogers, and J. D. Doyle, 2019: Axisymmetric potential vorticity evolution of Hurricane Patricia (2015). J. Atmos. Sci., 76, 20432063, https://doi.org/10.1175/JAS-D-18-0373.1.

    • Search Google Scholar
    • Export Citation
  • Matejka, T., and D. L. Bartels, 1998: The accuracy of vertical air velocities from Doppler radar data. Mon. Wea. Rev., 126, 92117, https://doi.org/10.1175/1520-0493(1998)126<0092:TAOVAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Search Google Scholar
    • Export Citation
  • North, K. W., M. Oue, P. Kollias, S. E. Giangrande, S. M. Collis, and C. K. Potvin, 2017: Vertical air motion retrievals in deep convective clouds using the ARM scanning radar network in Oklahoma during MC3E. Atmos. Meas. Tech., 10, 27852806, https://doi.org/10.5194/amt-10-2785-2017.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1987: Scale-controlled objective analysis. Mon. Wea. Rev., 115, 24792506, https://doi.org/10.1175/1520-0493(1987)115<2479:SCOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 2002: The cubic-spline transform method: Basic definitions and tests in a 1D single domain. Mon. Wea. Rev., 130, 23922415, https://doi.org/10.1175/1520-0493(2002)130<2392:TCSTMB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oue, M., P. Kollias, A. Shapiro, A. Tatarevic, and T. Matsui, 2019: Investigation of observational error sources in multi-Doppler-radar three-dimensional variational vertical air motion retrievals. Atmos. Meas. Tech., 12, 19992018, https://doi.org/10.5194/amt-12-1999-2019.

    • Search Google Scholar
    • Export Citation
  • Oue, M., A. Tatarevic, P. Kollias, D. Wang, K. Yu, and A. M. Vogelmann, 2020: The Cloud-Resolving Model Radar Simulator (CR-SIM) version 3.3: Description and applications of a virtual observatory. Geosci. Model Dev., 13, 19751998, https://doi.org/10.5194/gmd-13-1975-2020.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., D. Betten, L. J. Wicker, K. L. Elmore, and M. I. Biggerstaff, 2012a: 3DVAR versus traditional dual-Doppler wind retrievals of a simulated supercell thunderstorm. Mon. Wea. Rev., 140, 34873494, https://doi.org/10.1175/MWR-D-12-00063.1.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., L. J. Wicker, and A. Shapiro, 2012b: Assessing errors in variational dual-Doppler wind syntheses of supercell thunderstorms observed by storm-scale mobile radars. J. Atmos. Oceanic Technol., 29, 10091025, https://doi.org/10.1175/JTECH-D-11-00177.1.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and I. Zawadzki, 1999: A variational method for real-time retrieval of three-dimensional wind field from multiple-Doppler bistatic radar network data. J. Atmos. Oceanic Technol., 16, 432449, https://doi.org/10.1175/1520-0426(1999)016<0432:AVMFRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts, 2003: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon. Wea. Rev., 131, 15241535, https://doi.org/10.1175//1520-0493(2003)131<1524:NAOTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., J. J. Stephens, and K. W. Johnson, 1979: Multiple-Doppler radar network design. J. Appl. Meteor., 18, 706710, https://doi.org/10.1175/1520-0450(1979)018<0706:MDRND>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., C. L. Ziegler, W. Bumgarner, and R. J. Serafin, 1980: Single- and multiple-Doppler radar observations of tornadic storms. Mon. Wea. Rev., 108, 16071625, https://doi.org/10.1175/1520-0493(1980)108<1607:SAMDRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Singh, J., and Coauthors, 2021: Effects of spatial resolution on WRF v3.8.1 simulated meteorology over the central Himalaya. Geosci. Model Dev., 14, 14271443, https://doi.org/10.5194/gmd-14-1427-2021.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2021: A description of the Advanced Research WRF Model version 4.3. NCAR Tech. Note NCAR/TN-556+STR, 165 pp., https://doi.org/10.5065/1dfh-6p97.

  • Smith, R. B., and I. Barstad, 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61, 13771391, https://doi.org/10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., 1991: A new relationship between mean Doppler velocity and differential reflectivity. J. Atmos. Oceanic Technol., 8, 430443, https://doi.org/10.1175/1520-0426(1991)008<0430:ANRBMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tseng, Y.-H., and J. H. Ferziger, 2003: A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys., 192, 593623, https://doi.org/10.1016/j.jcp.2003.07.024.

    • Search Google Scholar
    • Export Citation
  • U.S./Japan ASTER Science Team, 2019: ASTER global digital elevation model V003. NASA EOSDIS Land Processes DAAC, accessed 24 October 2022, https://doi.org/10.5067/ASTER/ASTGTM.003.

  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 655 558 26
Full Text Views 229 209 11
PDF Downloads 244 219 16