Technical Overview of the TexMesonet—A Network of Networks for Improved Water Management and Prediction in Texas

Briana M. Wyatt aDepartment of Soil and Crop Sciences, Texas A&M University, College Station, Texas

Search for other papers by Briana M. Wyatt in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3393-1157
,
Nathan Leber bTexas Water Development Board, Austin, Texas

Search for other papers by Nathan Leber in
Current site
Google Scholar
PubMed
Close
, and
Mark Olden bTexas Water Development Board, Austin, Texas

Search for other papers by Mark Olden in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurate, timely, and accessible meteorological and soil moisture measurements are essential for a number of applications including weather forecasting, agricultural decision-making, and flood and drought prediction. Such data are becoming increasingly available globally, but the large number of networks and various data reporting formats often make utilization of such data difficult. The TexMesonet is a “network of networks” developed within the state of Texas to collect, process, and make public data collected from more than 1700 monitoring stations throughout the state. This paper describes the TexMesonet, with special attention paid to monitoring sites installed and managed by the Texas Water Development Board. It also provides a case study exemplifying how these data may be used and gives recommendations for future data applications.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Briana M. Wyatt, briana.wyatt@tamu.edu

Abstract

Accurate, timely, and accessible meteorological and soil moisture measurements are essential for a number of applications including weather forecasting, agricultural decision-making, and flood and drought prediction. Such data are becoming increasingly available globally, but the large number of networks and various data reporting formats often make utilization of such data difficult. The TexMesonet is a “network of networks” developed within the state of Texas to collect, process, and make public data collected from more than 1700 monitoring stations throughout the state. This paper describes the TexMesonet, with special attention paid to monitoring sites installed and managed by the Texas Water Development Board. It also provides a case study exemplifying how these data may be used and gives recommendations for future data applications.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Briana M. Wyatt, briana.wyatt@tamu.edu

Supplementary Materials

    • Supplemental Materials (PDF 0.2519 MB)
Save
  • Bell, J. E., and Coauthors, 2013: U.S. Climate Reference Network soil moisture and temperature observations. J. Hydrometeor., 14, 977988, https://doi.org/10.1175/JHM-D-12-0146.1.

    • Search Google Scholar
    • Export Citation
  • Caldwell, T. G., and Coauthors, 2019: The Texas Soil Observation Network: A comprehensive soil moisture dataset for remote sensing and land surface model validation. Vadose Zone J., 18, 120, https://doi.org/10.2136/vzj2019.04.0034.

    • Search Google Scholar
    • Export Citation
  • Campbell Scientific, 2001a: Heat index. Campbell Scientific Application Note 5-S, revision 1, 6 pp., https://s.campbellsci.com/documents/us/technical-papers/heatindx.pdf.

  • Campbell Scientific, 2001b: Wind chill. Campbell Scientific Application Note 2T-M, revision 2, 6 pp., https://s.campbellsci.com/documents/es/technical-papers/windchil.pdf.

  • Carmichael, G. R., A. Sandu, T. Chai, D. N. Daescu, E. M. Constantinescu, and Y. Tang, 2008: Predicting air quality: Improvements through advanced methods to integrate models and measurements. J. Comput. Phys., 227, 35403571, https://doi.org/10.1016/j.jcp.2007.02.024.

    • Search Google Scholar
    • Export Citation
  • Chaparro, D., M. Vall-llossera, M. Piles, A. Camps, C. Rüdiger, and R. Riera-Tatché, 2016: Predicting the extent of wildfires using remotely sensed soil moisture and temperature trends. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 9, 28182829, https://doi.org/10.1109/JSTARS.2016.2571838.

    • Search Google Scholar
    • Export Citation
  • Clarke, B., C. Barrere, P. E. Melinda Luna, and D. Y. Eit, 2007: Using multiple-sensor quantitative precipitation estimation for flood forecasting in the lower Colorado River basin. 21st Conf. on Hydrology, San Antonio, TX, Amer. Meteor. Soc., J2.7, https://ams.confex.com/ams/87ANNUAL/techprogram/paper_121194.htm.

  • Diamond, H. J., and Coauthors, 2013: U.S. Climate Reference Network after one decade of operations: Status and assessment. Bull. Amer. Meteor. Soc., 94, 485498, https://doi.org/10.1175/BAMS-D-12-00170.1.

    • Search Google Scholar
    • Export Citation
  • Elliott, R. L., D. S. Arndt, M. A. Shafer, N. I. Osborn, and W. E. Lawrence, 2007: The Oklahoma Mesonet: A multi-purpose network for water resources monitoring and management. Hazards in Water Resources Conf., Boise, ID, UCOWR–NIWR.

  • Ford, T. W., A. D. Rapp, S. M. Quiring, and J. Blake, 2015: Soil moisture–precipitation coupling: Observations from the Oklahoma Mesonet and underlying physical mechanisms. Hydrol. Earth Syst. Sci., 19, 36173631, https://doi.org/10.5194/hess-19-3617-2015.

    • Search Google Scholar
    • Export Citation
  • Glazer, Y. R., and Coauthors, 2021: Winter Storm Uri: A test of Texas’ water infrastructure and water resource resilience to extreme winter weather events. J. Extreme Events, 8, 2150022, https://doi.org/10.1142/S2345737621500226.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and S. Gratch, 1946: Low-pressure properties of water from −160° to 212°F. Trans. Amer. Soc. Heat. Vent. Eng., 51, 125164.

    • Search Google Scholar
    • Export Citation
  • Greene, K. M., 2020: Modernizing a mesonet. Part I: TexMesonet installation and wiring. 100th Annual Meeting, Boston, MA, Amer. Meteor. Soc., 6.4, https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/367134.

  • Hocker, J. E., A. D. Melvin, K. A. Kloesel, C. A. Fiebrich, R. W. Hill, R. D. Smith, and S. F. Piltz, 2018: The evolution and impact of a meteorological outreach program for public safety officials: An update on the Oklahoma Mesonet’s OK-First program. Bull. Amer. Meteor. Soc., 99, 20092024, https://doi.org/10.1175/BAMS-D-17-0100.1.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and X. Dong, 2010: An evaluation of the distribution of Remote Automated Weather Stations (RAWS). J. Appl. Meteor. Climatol., 49, 15631578, https://doi.org/10.1175/2010JAMC2397.1.

    • Search Google Scholar
    • Export Citation
  • Illston, B. G., and J. B. Basara, 2002: A soil moisture analysis of drought conditions using the Oklahoma Mesonet. 13th Conf. on Applied Climatology, Bowling Green, KY, Amer. Meteor. Soc., 8.4, https://ams.confex.com/ams/pdfpapers/38977.pdf.

  • Kim, D., B. Nelson, and D.-J. Seo, 2009: Characteristics of reprocessed Hydrometeorological Automated Data System (HADS) hourly precipitation data. Wea. Forecasting, 24, 12871296, https://doi.org/10.1175/2009WAF2222227.1.

    • Search Google Scholar
    • Export Citation
  • Klockow, K. E., R. A. McPherson, and D. S. Sutter, 2010: On the economic nature of crop production decisions using the Oklahoma Mesonet. Wea. Climate Soc., 2, 224236, https://doi.org/10.1175/2010WCAS1034.1.

    • Search Google Scholar
    • Export Citation
  • Krueger, E. S., T. E. Ochsner, D. M. Engle, J. D. Carlson, D. Twidwell, and S. D. Fuhlendorf, 2015: Soil moisture affects growing-season wildfire size in the Southern Great Plains. Soil Sci. Soc. Amer. J., 79, 15671576, https://doi.org/10.2136/sssaj2015.01.0041.

    • Search Google Scholar
    • Export Citation
  • Krueger, E. S., T. E. Ochsner, J. D. Carlson, D. M. Engle, D. Twidwell, and S. D. Fuhlendorf, 2016: Concurrent and antecedent soil moisture relate positively or negatively to probability of large wildfires depending on season. Int. J. Wildland Fire, 25, 657668, https://doi.org/10.1071/WF15104.

    • Search Google Scholar
    • Export Citation
  • Krueger, E. S., T. E. Ochsner, S. M. Quiring, D. M. Engle, J. D. Carlson, D. Twidwell, and S. D. Fuhlendorf, 2017: Measured soil moisture is a better predictor of large growing-season wildfires than the Keetch–Byram drought index. Soil Sci. Soc. Amer. J., 81, 490502, https://doi.org/10.2136/sssaj2017.01.0003.

    • Search Google Scholar
    • Export Citation
  • Krueger, E. S., and Coauthors, 2022: Using soil moisture information to better understand and predict wildfire danger: A review of recent developments and outstanding questions. Int. J. Wildland Fire, 32, 111132, https://doi.org/10.1071/WF22056.

    • Search Google Scholar
    • Export Citation
  • Kulesa, G. J., D. J. Pace, W. L. Fellner, J. E. Sheets, V. S. Travers, and P. J. Kirchoffer, 2003: The FAA Aviation Weather Research Program’s contribution to air transportation safety and efficiency. Proc. 19th Conf. on Interactive Information Proc. Systems for Meteorology, Oceanography and Hydrology, Boston, MA, Amer. Meteor. Soc., 9.1, https://ams.confex.com/ams/pdfpapers/54862.pdf.

  • Kuligowski, R. J., 1997: An overview of National Weather Service quantitative precipitation estimates. TDL Office Note 97-4, 30 pp., https://repository.library.noaa.gov/view/noaa/6879/noaa_6879_DS1.pdf.

  • Lowe, P. R., 1977: An approximating polynomial for the computation of saturation vapor pressure. J. Appl. Meteor., 16, 100103, https://doi.org/10.1175/1520-0450(1977)016<0100:AAPFTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marek, T. H., D. Porter, T. A. Howell, G. W. Marek, and D. Brauer, 2020: The impact and value of accurate evapotranspiration networks in Texas High Plains production agriculture. Appl. Eng. Agric., 36, 451455, https://doi.org/10.13031/aea.13913.

    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., and Coauthors, 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24, 301321, https://doi.org/10.1175/JTECH1976.1.

    • Search Google Scholar
    • Export Citation
  • NASS, 2022: Texas state agriculture overview. USDA, accessed 26 January 2023, https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=TEXAS.

  • Na-Yemeh, D. Y., C. A. Fiebrich, J. E. Hocker, and M. A. Shafer, 2022: Assessing the impacts of a weather decision support system for Oklahoma public safety officials. Wea. Climate Soc., 14, 597608, https://doi.org/10.1175/WCAS-D-21-0086.1.

    • Search Google Scholar
    • Export Citation
  • Na-Yemeh, D. Y., T. A. Legg, and L. H. Lambert, 2023: Economic value of a weather decision support system for Oklahoma public safety officials. Ann. Assoc. Amer. Geogr., 113, 549565, https://doi.org/10.1080/24694452.2022.2108747.

    • Search Google Scholar
    • Export Citation
  • NCEI, 2022: Climate at a glance: County time series, average temperature. NOAA, accessed 15 September 2022, https://www.ncdc.noaa.gov/cag/.

  • NWCG, 2019: NWCG standards for fire weather stations. NWCG Doc. PMS 426-3, 50 pp., https://raws.nifc.gov/sites/default/files/inline-files/NWCG%20Standards%20for%20Fire%20Weather%20Stations_2019_1.pdf.

  • NWS, 2017: Observational quality control—General. NWS Instruction 10-1305, 21 pp., https://www.nws.noaa.gov/directives/sym/pd01013005curr.pdf.

  • Ochsner, T. E., and Coauthors, 2013: State of the art in large-scale soil moisture monitoring. Soil Sci. Soc. Amer. J., 77, 18881919, https://doi.org/10.2136/sssaj2013.03.0093.

    • Search Google Scholar
    • Export Citation
  • Osczevski, R., and M. Bluestein, 2005: The new wind chill equivalent temperature chart. Bull. Amer. Meteor. Soc., 86, 14531458, https://doi.org/10.1175/BAMS-86-10-1453.

    • Search Google Scholar
    • Export Citation
  • Patrignani, A., and T. E. Ochsner, 2018: Modeling transient soil moisture dichotomies in landscapes with intermixed land covers. J. Hydrol., 566, 783794, https://doi.org/10.1016/j.jhydrol.2018.09.049.

    • Search Google Scholar
    • Export Citation
  • Schaefer, G. L., M. H. Cosh, and T. J. Jackson, 2007: The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN). J. Atmos. Oceanic Technol., 24, 20732077, https://doi.org/10.1175/2007JTECHA930.1.

    • Search Google Scholar
    • Export Citation
  • Schroeder, J. L., W. S. Burgett, K. B. Haynie, I. Sonmez, G. D. Skwira, A. L. Doggett, and J. W. Lipe, 2005: The West Texas Mesonet: A technical overview. J. Atmos. Oceanic Technol., 22, 211222, https://doi.org/10.1175/JTECH-1690.1.

    • Search Google Scholar
    • Export Citation
  • Shafer, M. A., C. A. Fiebrich, D. S. Arndt, S. E. Fredrickson, and T. W. Hughes, 2000: Quality assurance procedures in the Oklahoma Mesonetwork. J. Atmos. Oceanic Technol., 17, 474494, https://doi.org/10.1175/1520-0426(2000)017<0474:QAPITO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., and D. J. Stensrud, 2015: Assimilating surface mesonet observations with the EnKF to improve ensemble forecasts of convection initiation on 29 May 2012. Mon. Wea. Rev., 143, 37003725, https://doi.org/10.1175/MWR-D-14-00126.1.

    • Search Google Scholar
    • Export Citation
  • Steadman, R. G., 1979a: The assessment of sultriness. Part I: A temperature-humidity index based on human physiology and clothing science. J. Appl. Meteor., 18, 861873, https://doi.org/10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steadman, R. G., 1979b: The assessment of sultriness. Part II: Effects of wind, extra radiation and barometric pressure on apparent temperature. J. Appl. Meteor., 18, 874885, https://doi.org/10.1175/1520-0450(1979)018<0874:TAOSPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Texas A&M Forest Service, 2022: Borrega fire. Accessed 10 October 2022, https://inciweb.nwcg.gov/incident/8043/.

  • TWDB, 2022a: Frequently asked questions. TWDB, accessed 4 May 2022, https://www.texmesonet.org/FAQ.

  • TWDB, 2022b: TexMesonet. TWDB Doc., 2 pp., https://www.twdb.texas.gov/publications/shells/TexMesonet.pdf.

  • USDA, 2023: Web soil survey. USDA Natural Resources Conservation Service, accessed 30 January 2023, https://websoilsurvey.nrcs.usda.gov/app/.

  • Weiss, A., 1977: Algorithms for the calculation of moist air properties on a hand calculator. Trans. ASAE, 20, 11331136.

  • WMO, 2014: Siting classifications for surface observing stations on land. Guide to meteorological instruments and methods of observation. WMO Doc. 8, Annex 1.B, 31–42.

  • Wyatt, B. M., T. E. Ochsner, and C. B. Zou, 2021: Estimating root zone soil moisture across diverse land cover types by integrating in-situ and remotely sensed data. Agric. For. Meteor., 307, 108471, https://doi.org/10.1016/j.agrformet.2021.108471.

    • Search Google Scholar
    • Export Citation
  • Ziolkowska, J. R., 2018: Economic value of environmental and weather information for agricultural decisions—A case study for Oklahoma Mesonet. Agric. Ecosyst. Environ., 265, 503512, https://doi.org/10.1016/j.agee.2018.07.008.

    • Search Google Scholar
    • Export Citation
  • Ziolkowska, J. R., and Coauthors, 2017: Benefits and beneficiaries of the Oklahoma Mesonet: A multisectoral ripple effect analysis. Wea. Climate Soc., 9, 499519, https://doi.org/10.1175/WCAS-D-16-0139.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 584 498 17
Full Text Views 114 92 5
PDF Downloads 135 106 5