Multisensor Agile Adaptive Sampling (MAAS): A Methodology to Collect Radar Observations of Convective Cell Life Cycle

Katia Lamer aBrookhaven National Laboratory, Upton, New York

Search for other papers by Katia Lamer in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8328-5704
,
Pavlos Kollias aBrookhaven National Laboratory, Upton, New York
bStony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Pavlos Kollias in
Current site
Google Scholar
PubMed
Close
,
Edward P. Luke aBrookhaven National Laboratory, Upton, New York

Search for other papers by Edward P. Luke in
Current site
Google Scholar
PubMed
Close
,
Bernat P. Treserras cMcGill University, Montreal, Quebec, Canada

Search for other papers by Bernat P. Treserras in
Current site
Google Scholar
PubMed
Close
,
Mariko Oue bStony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Mariko Oue in
Current site
Google Scholar
PubMed
Close
, and
Brenda Dolan dDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Brenda Dolan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Multisensor Agile Adaptive Sampling (MAAS), a smart sensing framework, was adapted to increase the likelihood of observing the vertical structure (with little to no gaps), spatial variability (at subkilometer scale), and temporal evolution (at ∼2-min resolution) of convective cells. This adaptation of MAAS guided two mechanically scanning C-band radars (CSAPR2 and CHIVO) by automatically analyzing the latest NEXRAD data to identify, characterize, track, and nowcast the location of all convective cells forming in the Houston domain. MAAS used either a list of predetermined rules or real-time user input to select a convective cell to be tracked and sampled by the C-band radars. The CSAPR2 tracking radar was first tasked to collect three sector plan position indicator (PPI) scans toward the selected cell. Edge computer processing of the PPI scans was used to identify additional targets within the selected cell. In less than 2 min, both the CSAPR2 and CHIVO radars were able to collect bundles of three to six range–height indicator (RHI) scans toward different targets of interest within the selected cell. Bundles were successively collected along the path of cell advection for as long as the cell met a predetermined set of criteria. Between 1 June and 30 September 2022 over 315 000 vertical cross-section observations were collected by the C-band radars through ∼1300 unique isolated convective cells, most of which were observed for over 15 min of their life cycle. To the best of our knowledge, this dataset, collected primarily through automatic means, constitutes the largest dataset of its kind.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Katia Lamer, klamer@bnl.gov

Abstract

Multisensor Agile Adaptive Sampling (MAAS), a smart sensing framework, was adapted to increase the likelihood of observing the vertical structure (with little to no gaps), spatial variability (at subkilometer scale), and temporal evolution (at ∼2-min resolution) of convective cells. This adaptation of MAAS guided two mechanically scanning C-band radars (CSAPR2 and CHIVO) by automatically analyzing the latest NEXRAD data to identify, characterize, track, and nowcast the location of all convective cells forming in the Houston domain. MAAS used either a list of predetermined rules or real-time user input to select a convective cell to be tracked and sampled by the C-band radars. The CSAPR2 tracking radar was first tasked to collect three sector plan position indicator (PPI) scans toward the selected cell. Edge computer processing of the PPI scans was used to identify additional targets within the selected cell. In less than 2 min, both the CSAPR2 and CHIVO radars were able to collect bundles of three to six range–height indicator (RHI) scans toward different targets of interest within the selected cell. Bundles were successively collected along the path of cell advection for as long as the cell met a predetermined set of criteria. Between 1 June and 30 September 2022 over 315 000 vertical cross-section observations were collected by the C-band radars through ∼1300 unique isolated convective cells, most of which were observed for over 15 min of their life cycle. To the best of our knowledge, this dataset, collected primarily through automatic means, constitutes the largest dataset of its kind.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Katia Lamer, klamer@bnl.gov
Save
  • Ayzel, G., M. Heistermann, and T. Winterrath, 2019: Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1). Geosci. Model Dev., 12, 13871402, https://doi.org/10.5194/gmd-12-1387-2019.

    • Search Google Scholar
    • Export Citation
  • Bentley, J. L., 1975: Multidimensional binary search trees used for associative searching. Commun. ACM, 18, 509517, https://doi.org/10.1145/361002.361007.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., V. T. Wood, R. M. Steadham, R. R. Lee, B. A. Flickinger, and D. Sirmans, 2005: New WSR-88D Volume Coverage Pattern 12: Results of field tests. Wea. Forecasting, 20, 385393, https://doi.org/10.1175/WAF848.1.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham, 1949: The Thunderstorm: Report of the Thunderstorm Project. U.S. Government Printing Office, 287 pp.

  • Chrisman, J. N., 2013: Dynamic scanning. NEXRAD Now, No. 22, NEXRAD ROC, Norman, OK, 1–3, https://www.roc.noaa.gov/WSR88D/PublicDocs/NNOW/NNow22c.pdf.

  • Crum, T. D., R. E. Saffle, and J. W. Wilson, 1998: An update on the NEXRAD program and future WSR-88D support to operations. Wea. Forecasting, 13, 253262, https://doi.org/10.1175/1520-0434(1998)013<0253:AUOTNP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., E. R. Mansell, and M. R. Kumjian, 2015: Does wind shear cause hydrometeor size sorting? J. Atmos. Sci., 72, 340348, https://doi.org/10.1175/JAS-D-14-0084.1.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., M. Scherer, and R. J. Trapp, 2013: Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl. Acad. Sci. USA, 110, 16 36116 366, https://doi.org/10.1073/pnas.1307758110.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., and Coauthors, 2019: Use of polarimetric radar measurements to constrain simulated convective cell evolution: A pilot study with Lagrangian tracking. Atmos. Meas. Tech., 12, 29793000, https://doi.org/10.5194/amt-12-2979-2019.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 12811304, https://doi.org/10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, J., and Coauthors, 2019: Tracking and characterization of convective cells through their maturation into stratiform storm elements using polarimetric radar and lightning detection. Atmos. Res., 226, 192207, https://doi.org/10.1016/j.atmosres.2019.04.015.

    • Search Google Scholar
    • Export Citation
  • Kingfield, D. M., and M. M. French, 2022: The influence of WSR-88D intra-volume scanning strategies on thunderstorm observations and warnings in the dual-polarization radar era: 2011–20. Wea. Forecasting, 37, 283301, https://doi.org/10.1175/WAF-D-21-0127.1.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., N. Bharadwaj, K. Widener, I. Jo, and K. Johnson, 2014: Scanning ARM cloud radars. Part I: Operational sampling strategies. J. Atmos. Oceanic Technol., 31, 569582, https://doi.org/10.1175/JTECH-D-13-00044.1.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., and Coauthors, 2020a: The ARM radar network: At the leading edge of cloud and precipitation observations. Bull. Amer. Meteor. Soc., 101, E588E607, https://doi.org/10.1175/BAMS-D-18-0288.1.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., E. Luke, M. Oue, and K. Lamer, 2020b: Agile adaptive radar sampling of fast‐evolving atmospheric phenomena guided by satellite imagery and surface cameras. Geophys. Res. Lett., 47, e2020GL088440, https://doi.org/10.1029/2020GL088440.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., and Coauthors, 2022: Science applications of phased array radars. Bull. Amer. Meteor. Soc., 103, E2370E2390, https://doi.org/10.1175/BAMS-D-21-0173.1.

    • Search Google Scholar
    • Export Citation
  • Ladino, L. A., A. Korolev, I. Heckman, M. Wolde, A. M. Fridlind, and A. S. Ackerman, 2017: On the role of ice-nucleating aerosol in the formation of ice particles in tropical mesoscale convective systems. Geophys. Res. Lett., 44, 15741582, https://doi.org/10.1002/2016GL072455.

    • Search Google Scholar
    • Export Citation
  • Lucas, B. D., and T. Kanade, 1981: An iterative image registration technique with an application to stereo vision. Seventh Int. Joint Conf. on Artificial Intelligence, Vancouver, BC, Canada, IJCAI, 674–679.

  • Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McLaughlin, D., and Coauthors, 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971818, https://doi.org/10.1175/2009BAMS2507.1.

    • Search Google Scholar
    • Export Citation
  • Miller, M. A., K. Nitschke, T. P. Ackerman, W. R. Ferrell, N. Hickmon, and M. Ivey, 2016: The ARM mobile facilities. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0051.1.

  • Morrison, H., and Coauthors, 2020: Confronting the challenge of modeling cloud and precipitation microphysics. J. Adv. Model. Earth Syst., 12, e2019MS001689, https://doi.org/10.1029/2019MS001689.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and P. Zhang, 2013: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886, https://doi.org/10.1175/JAMC-D-13-074.1.

    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., C. Piani, W. J. Ingram, D. A. Stone, and M. R. Allen, 2008: Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations. Climate Dyn., 30, 175190, https://doi.org/10.1007/s00382-007-0280-7.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., Griffith, P., M. Gunshor, J. Daniels, S. Goodman, and W. Lebair, 2017: A closer look at the ABI on the GOES-R series. Bull. Amer. Meteor. Soc., 98, 681698, https://doi.org/10.1175/BAMS-D-15-00230.1.

    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., and M. R. Kumjian, 2016: Connecting microphysical processes in Colorado winter storms with vertical profiles of radar observations. J. Appl. Meteor. Climatol., 55, 17711787, https://doi.org/10.1175/JAMC-D-15-0338.1.

    • Search Google Scholar
    • Export Citation
  • Seeley, J. T., and D. M. Romps, 2015: The effect of global warming on severe thunderstorms in the United States. J. Climate, 28, 24432458, https://doi.org/10.1175/JCLI-D-14-00382.1.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, and J.-L. Dufresne, 2014: Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505, 3742, https://doi.org/10.1038/nature12829.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., A. V. Ryzhkov, M. R. Kumjian, A. P. Khain, and J. Picca, 2015: A ZDR column detection algorithm to examine convective storm updrafts. Wea. Forecasting, 30, 18191844, https://doi.org/10.1175/WAF-D-15-0068.1.

    • Search Google Scholar
    • Export Citation
  • Stein, T. H., R. J. Hogan, P. A. Clark, C. E. Halliwell, K. E. Hanley, H. W. Lean, J. C. Nicol, and R. S. Plant, 2015: The DYMECS project: A statistical approach for the evaluation of convective storms in high-resolution NWP models. Bull. Amer. Meteor. Soc., 96, 939951, https://doi.org/10.1175/BAMS-D-13-00279.1.

    • Search Google Scholar
    • Export Citation
  • Torres, S. M., and Coauthors, 2016: Adaptive-weather-surveillance and multifunction capabilities of the National Weather Radar Testbed phased array radar. Proc. IEEE, 104, 660672, https://doi.org/10.1109/JPROC.2015.2484288.

    • Search Google Scholar
    • Export Citation
  • Varble, A. C., and Coauthors, 2021: Utilizing a storm-generating hotspot to study convective cloud transitions: The CACTI experiment. Bull. Amer. Meteor. Soc., 102, E1597E1620, https://doi.org/10.1175/BAMS-D-20-0030.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., 2014: An investigation of the connections among convection, clouds, and climate sensitivity in a global climate model. J. Climate, 27, 18451862, https://doi.org/10.1175/JCLI-D-13-00145.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 684 684 56
Full Text Views 183 183 18
PDF Downloads 210 210 26