Swish Floats: An Inexpensive Neutrally Buoyant Float to Monitor Dispersion in Coastal Seas

Samuel W. Stevens aDepartment of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Samuel W. Stevens in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1108-6578
and
Rich Pawlowicz aDepartment of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Rich Pawlowicz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Neutrally buoyant floats have been widely used to measure flows in the ocean, but deploying them in large numbers can be costly and impractical. This is particularly true near coastlines due to the elevated risk of instrument grounding or vessel collisions, resulting in a lack of subsurface Lagrangian measurements in coastal regions. Here, we describe an inexpensive neutrally buoyant satellite-tracked float (named “Swallow-ish,” or “Swish” floats) that has been designed and tested as a cost-effective strategy to measure subsurface dispersion in coastal areas on time scales up to a month. These autonomous instruments are inexpensive, constructed at a material cost of CAD $300 per unit; lightweight, with a mass of 5.4 kg; isopycnal; and constructed from commercially available components, using recently available global navigation satellite system technology to provide the user with a point-to-point measure of subsurface transport. We describe the float design, ballasting techniques, and the governing equations that determine their behavior. Further, through 29 deployments in two coastal seas, we calculate an uncertainty budget and determine a ballasting error of ±1.6 g, corresponding to a local depth targeting error of 16–30 m, analyze the float resurfacing data to calculate subsurface dispersion coefficients, and examine the float depth records to quantify the local internal wave field. Finally, we evaluate surface dispersion using the postresurfacing trajectories. Our findings indicate that Swish floats offer a cost-effective alternative for Lagrangian measurements of subsurface flows in coastal regions.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Samuel W. Stevens, sstevens@eoas.ubc.ca

Abstract

Neutrally buoyant floats have been widely used to measure flows in the ocean, but deploying them in large numbers can be costly and impractical. This is particularly true near coastlines due to the elevated risk of instrument grounding or vessel collisions, resulting in a lack of subsurface Lagrangian measurements in coastal regions. Here, we describe an inexpensive neutrally buoyant satellite-tracked float (named “Swallow-ish,” or “Swish” floats) that has been designed and tested as a cost-effective strategy to measure subsurface dispersion in coastal areas on time scales up to a month. These autonomous instruments are inexpensive, constructed at a material cost of CAD $300 per unit; lightweight, with a mass of 5.4 kg; isopycnal; and constructed from commercially available components, using recently available global navigation satellite system technology to provide the user with a point-to-point measure of subsurface transport. We describe the float design, ballasting techniques, and the governing equations that determine their behavior. Further, through 29 deployments in two coastal seas, we calculate an uncertainty budget and determine a ballasting error of ±1.6 g, corresponding to a local depth targeting error of 16–30 m, analyze the float resurfacing data to calculate subsurface dispersion coefficients, and examine the float depth records to quantify the local internal wave field. Finally, we evaluate surface dispersion using the postresurfacing trajectories. Our findings indicate that Swish floats offer a cost-effective alternative for Lagrangian measurements of subsurface flows in coastal regions.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Samuel W. Stevens, sstevens@eoas.ubc.ca
Save
  • ASME, 2019: Rules for construction of pressure vessels. ASME boiler and pressure vessel code, ASME Doc., 19–23.

  • Atkinson, M. J., and C. Bingman, 1997: Elemental composition of commercial seasalts. J. Aquaric. Aquat. Sci., 8, 3943.

  • Bassett, C., B. Polagye, M. Holt, and J. Thomson, 2012: A vessel noise budget for Admiralty Inlet, Puget Sound, Washington (USA). J. Acoust. Soc. Amer., 132, 37063719, https://doi.org/10.1121/1.4763548.

    • Search Google Scholar
    • Export Citation
  • Bower, A., S. Lozier, and S. Gary, 2011: Export of Labrador Sea Water from the subpolar North Atlantic: A Lagrangian perspective. Deep-Sea Res. II, 58, 17981818, https://doi.org/10.1016/j.dsr2.2010.10.060.

    • Search Google Scholar
    • Export Citation
  • Budynas, R. G., and A. M. Sadegh, 2020: Roark’s Formulas for Stress and Strain. 9th ed. McGraw-Hill Education, 928 pp.

  • Curcic, M., S. S. Chen, and T. M. Özgökmen, 2016: Hurricane-induced ocean waves and Stokes drift and their impacts on surface transport and dispersion in the Gulf of Mexico. Geophys. Res. Lett., 43, 27732781, https://doi.org/10.1002/2015GL067619.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2003: Performance of autonomous Lagrangian floats. J. Atmos. Oceanic Technol., 20, 896911, https://doi.org/10.1175/1520-0426(2003)020<0896:POALF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., D. M. Farmer, J. T. Osse, and G. T. Dairiki, 1996: A Lagrangian float. J. Atmos. Oceanic Technol., 13, 12301246, https://doi.org/10.1175/1520-0426(1996)013<1230:ALF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dexter, S., 1972: Metals and alloys. Vol. I, Handbook of oceanographic engineering materials, WHOI Tech. Memo. WHOI-04-72, 97 pp., https://darchive.mblwhoilibrary.org/server/api/core/bitstreams/bb478708-4182-516f-92ba-123fcbe4f2fb/content.

  • Fischer, G., T. Rossby, and D. Moonan, 2017: A miniature acoustic device for tracking small marine animals or submerged drifters. J. Atmos. Oceanic Technol., 34, 26012612, https://doi.org/10.1175/JTECH-D-17-0127.1.

    • Search Google Scholar
    • Export Citation
  • Galbraith, P. S., J. Chassé, J. Dumas, J.-L. Shaw, C. Caverhill, D. Lefaivre, and C. Lafleur, 2022: Physical oceanographic conditions in the Gulf of St. Lawrence during 2021. DFO Canadian Science Advisory Secretariat Research Doc. 2022/034, 87 pp., https://publications.gc.ca/collections/collection_2022/mpo-dfo/fs70-5/Fs70-5-2022-034-eng.pdf.

  • Garfield, N., C. A. Collins, R. G. Paquette, and E. Carter, 1999: Lagrangian exploration of the California Undercurrent, 1992–95. J. Phys. Oceanogr., 29, 560583, https://doi.org/10.1175/1520-0485(1999)029<0560:LEOTCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1972: Space-time scales of internal waves. Geophys. Fluid Dyn., 3, 225264, https://doi.org/10.1080/03091927208236082.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80, 291297, https://doi.org/10.1029/JC080i003p00291.

    • Search Google Scholar
    • Export Citation
  • Goodman, L., and E. R. Levine, 1990: Vertical motion of neutrally buoyant floats. J. Atmos. Oceanic Technol., 7, 3849, https://doi.org/10.1175/1520-0426(1990)007<0038:VMONBF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gould, W. J., 2005: From swallow floats to Argo—The development of neutrally buoyant floats. Deep-Sea Res. II, 52, 529543, https://doi.org/10.1016/j.dsr2.2004.12.005.

    • Search Google Scholar
    • Export Citation
  • Hamilton, P., 2009: Topographic Rossby waves in the Gulf of Mexico. Prog. Oceanogr., 82, 131, https://doi.org/10.1016/j.pocean.2009.04.019.

    • Search Google Scholar
    • Export Citation
  • Han, G., J. W. Loder, and P. C. Smith, 1999: Seasonal-mean hydrography and circulation in the Gulf of St. Lawrence and on the eastern Scotian and southern Newfoundland shelves. J. Phys. Oceanogr., 29, 12791301, https://doi.org/10.1175/1520-0485(1999)029<1279:SMHACI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hebert, D., M. Prater, J. Fontaine, and T. Rossby, 1997: Results from the test deployments of the Coastal Ocean Lagrangian (COOL) float. University of Rhode Island GSO Tech. Rep. 97-2, 27 pp., https://apps.dtic.mil/sti/citations/ADA331390.

  • Hrycik, J. M., J. Chassé, B. R. Ruddick, and C. T. Taggart, 2013: Dispersal kernel estimation: A comparison of empirical and modelled particle dispersion in a coastal marine system. Estuarine Coastal Shelf Sci., 133, 1122, https://doi.org/10.1016/j.ecss.2013.06.023.

    • Search Google Scholar
    • Export Citation
  • Ikeda, C. M., J. Wilkerling, and J. H. Duncan, 2013: The implosion of cylindrical shell structures in a high-pressure water environment. Proc. Roy. Soc., 469A, 20130443, https://doi.org/10.1098/rspa.2013.0443.

    • Search Google Scholar
    • Export Citation
  • IOC, SCOR, and IAPSO, 2010: The International Thermodynamic Equation of Seawater—2010: Calculations and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, 218 pp., https://www.teos-10.org/pubs/TEOS-10_Manual.pdf.

  • Korotaev, G., T. Oguz, and S. Riser, 2006: Intermediate and deep currents of the Black Sea obtained from autonomous profiling floats. Deep-Sea Res. II, 53, 19011910, https://doi.org/10.1016/j.dsr2.2006.04.017.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J., 2008: Statistics from Lagrangian observations. Prog. Oceanogr., 77, 129, https://doi.org/10.1016/j.pocean.2008.02.002.

  • Lozier, M. S., A. S. Bower, H. H. Furey, K. L. Drouin, X. Xu, and S. Zou, 2022: Overflow water pathways in the North Atlantic. Prog. Oceanogr., 208, 102874, https://doi.org/10.1016/j.pocean.2022.102874.

    • Search Google Scholar
    • Export Citation
  • Meyerjürgens, J., T. H. Badewien, S. P. Garaba, J.-O. Wolff, and O. Zielinski, 2019: A state-of-the-art compact surface drifter reveals pathways of floating marine litter in the German Bight. Front. Mar. Sci., 6, 58, https://doi.org/10.3389/fmars.2019.00058.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., and J. D. Paduan, 1995: Wind-driven motions in the northeast Pacific as measured by Lagrangian drifters. J. Phys. Oceanogr., 25, 28192830, https://doi.org/10.1175/1520-0485(1995)025<2819:WDMITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., R. E. Davis, and H. J. White, 1987: Water-following characteristics of a mixed layer drifter. Deep-Sea Res., 34A, 18671881, https://doi.org/10.1016/0198-0149(87)90060-4.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., A. S. Sybrandy, K. Bi, P. M. Poulain, and D. Bitterman, 1995: Measurements of the water-following capability of holey-sock and TRISTAR drifters. Deep-Sea Res. I, 42, 19511964, https://doi.org/10.1016/0967-0637(95)00076-3.

    • Search Google Scholar
    • Export Citation
  • Novelli, G., C. M. Guigand, C. Cousin, E. H. Ryan, N. J. M. Laxague, H. Dai, B. K. Haus, and T. M. Özgökmen, 2017: A biodegradable surface drifter for ocean sampling on a massive scale. J. Atmos. Oceanic Technol., 34, 25092532, https://doi.org/10.1175/JTECH-D-17-0055.1.

    • Search Google Scholar
    • Export Citation
  • Page, S., C. Hannah, T. Juhasz, D. Spear, and H. Blanken, 2019: Surface circulation tracking drifter data for the Kitimat Fjord System in northern British Columbia and adjacent continental shelf for April, 2014 to July, 2016. Canadian Data Rep. of Hydrography and Ocean Science, Vol. 206, 33 pp.

  • Pawlowicz, R., 2015: The absolute salinity of seawater diluted by riverwater. Deep-Sea Res. I, 101, 7179, https://doi.org/10.1016/j.dsr.2015.03.006.

    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., 2021: The grounding of floating objects in a marginal sea. J. Phys. Oceanogr., 51, 537551, https://doi.org/10.1175/JPO-D-20-0183.1.

    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., C. Hannah, and A. Rosenburger, 2019: Lagrangian observations of estuarine residence times, dispersion, and trapping in the Salish Sea. Estuarine Coastal Shelf Sci., 225, 106246, https://doi.org/10.1016/j.ecss.2019.106246.

    • Search Google Scholar
    • Export Citation
  • Poulain, P.-M., and Coauthors, 2007: MedArgo: A drifting profiler program in the Mediterranean Sea. Ocean Sci., 3, 379395, https://doi.org/10.5194/os-3-379-2007.

    • Search Google Scholar
    • Export Citation
  • Prater, M. D., 2002: Eddies in the Labrador Sea as observed by profiling RAFOS floats and remote sensing. J. Phys. Oceanogr., 32, 411427, https://doi.org/10.1175/1520-0485(2002)032<0411:EITLSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Richardson, P. L., J. F. Price, W. B. Owens, W. J. Schmitz, H. T. Rossby, A. M. Bradley, J. R. Valdes, and D. C. Webb, 1981: North Atlantic Subtropical Gyre: SOFAR floats tracked by moored listening stations. Science, 213, 435437, https://doi.org/10.1126/science.213.4506.435.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., 2007: Evolution of Lagrangian methods in oceanography. Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, A. Griffa et al., Eds., Cambridge University Press, 1–38, https://doi.org/10.1017/CBO9780511535901.002.

  • Rossby, T., and D. Dorson, 1983: The deep drifter—A simple tool to determine average ocean currents. Deep-Sea Res., 30A, 12791288, https://doi.org/10.1016/0198-0149(83)90085-7.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., M. Omand, J. Palter, and D. Hebert, 2021: On rates of isopycnal dispersion at the submesoscale. Geophys. Res. Lett., 48, e2021GL093526, https://doi.org/10.1029/2021GL093526.

    • Search Google Scholar
    • Export Citation
  • Sandby, L. M., J. E. B. Mejdahl, S. H. Bjerregaard, C. Melvad, and S. Rysgaard, 2021: A cost-efficient low-weight autonomous profiler for measurements in polar coastal waters and other regions with strong density gradients. HardwareX, 10, E00207, https://doi.org/10.1016/j.ohx.2021.e00207.

    • Search Google Scholar
    • Export Citation
  • Sharp, A. G., 1981: Design curves for oceanographic pressure-resistant housings. WHOI Tech. Memo. 3-81, 44 pp., https://doi.org/10.1575/1912/1427.

  • Shoosmith, D. R., P. L. Richardson, A. S. Bower, and H. T. Rossby, 2005: Discrete eddies in the northern North Atlantic as observed by looping RAFOS floats. Deep-Sea Res. II, 52, 627650, https://doi.org/10.1016/j.dsr2.2004.12.011.

    • Search Google Scholar
    • Export Citation
  • Stevens, S. W., R. Pawlowicz, and S. E. Allen, 2021: A study of intermediate water circulation in the Strait of Georgia using tracer-based, Eulerian, and Lagrangian methods. J. Phys. Oceanogr., 51, 18751893, https://doi.org/10.1175/JPO-D-20-0225.1.

    • Search Google Scholar
    • Export Citation
  • Strub, P. T., C. James, V. Montecino, J. A. Rutllant, and J. L. Blanco, 2019: Ocean circulation along the southern Chile transition region (38°–46°S): Mean, seasonal and interannual variability, with a focus on 2014–2016. Prog. Oceanogr., 172, 159198, https://doi.org/10.1016/j.pocean.2019.01.004.

    • Search Google Scholar
    • Export Citation
  • Swallow, J. C., 1955: A neutral-buoyancy float for measuring deep currents. Deep-Sea Res., 3, 7481, https://doi.org/10.1016/0146-6313(55)90037-X.

    • Search Google Scholar
    • Export Citation
  • Swift, D. D., and S. C. Riser, 1994: RAFOS floats: Defining and targeting surfaces of neutral buoyancy. J. Atmos. Oceanic Technol., 11, 10791092, https://doi.org/10.1175/1520-0426(1994)011<1079:RFDATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van Sebille, E., E. Zettler, N. Wienders, L. Amaral-Zettler, S. Elipot, and R. Lumpkin, 2021: Dispersion of surface drifters in the tropical Atlantic. Front. Mar. Sci., 7, 607426, https://doi.org/10.3389/fmars.2020.607426.

    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., and Coauthors, 2020: Argo data 1999–2019: Two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats. Front. Mar. Sci., 7, 700, https://doi.org/10.3389/fmars.2020.00700.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1171 1171 43
Full Text Views 126 126 4
PDF Downloads 130 130 6