A Simple Method for Estimating Horizontal Diffusivity

Anna Olivé Abelló aDepartament d’Oceanografia Física i Tecnològica, Institut de Ciències del Mar, CSIC, Unidad Asociada ULPGC-CSIC, Barcelona, Spain

Search for other papers by Anna Olivé Abelló in
Current site
Google Scholar
PubMed
Close
,
Josep L. Pelegrí aDepartament d’Oceanografia Física i Tecnològica, Institut de Ciències del Mar, CSIC, Unidad Asociada ULPGC-CSIC, Barcelona, Spain

Search for other papers by Josep L. Pelegrí in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0661-2190
, and
Francisco Machín bDepartamento de Física, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain

Search for other papers by Francisco Machín in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A common dilemma for oceanographers is the choice of horizontal diffusivity. There is no single answer as we could argue that diffusion depends precisely on those processes that cannot be sampled or modeled. Here we propose the radial offset by diffusion (ROD) method as a simple model-dependent approach for estimating these coefficients, and show its application for the southwestern South Atlantic. The method compares actual displacements of field drifters with numerical trajectory predictions. The observed–predicted differences in radial positions (radial offsets), which respond to diffusive motions not captured by the numerical model, are reproduced with a one-dimensional radial-diffusive solution through a proper selection of the diffusion coefficient. The method is tested at eight depths, from the sea surface down to 2000 m, using several drifter datasets and the Parcels software applied to the GLORYS12v1 (1/12° daily) velocity outputs. In all cases the radial offsets show Gaussian distributions that are well reproduced by the radial diffusive solution. Maximum diffusivities of 4630–4980 m2 s−1 happen in the upper 200 m of the water column and minimum values of 1080–1270 m2 s−1 occur between 1400 and 2000 m. The 15-m diffusivity is fairly constant in latitude (3850–5270 m2 s−1), but the 1000-m diffusivity decreases from 1640 to 1820 m2 s−1 north of the Polar Front to 530 m2 s−1 south of the Southern Boundary. A comparison with other diffusivity studies validates the good adequacy of the ROD method for numerical and field applications.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Anna Olivé Abelló, aolive@icm.csic.es; Josep L. Pelegrí, pelegri@icm.csic.es

Abstract

A common dilemma for oceanographers is the choice of horizontal diffusivity. There is no single answer as we could argue that diffusion depends precisely on those processes that cannot be sampled or modeled. Here we propose the radial offset by diffusion (ROD) method as a simple model-dependent approach for estimating these coefficients, and show its application for the southwestern South Atlantic. The method compares actual displacements of field drifters with numerical trajectory predictions. The observed–predicted differences in radial positions (radial offsets), which respond to diffusive motions not captured by the numerical model, are reproduced with a one-dimensional radial-diffusive solution through a proper selection of the diffusion coefficient. The method is tested at eight depths, from the sea surface down to 2000 m, using several drifter datasets and the Parcels software applied to the GLORYS12v1 (1/12° daily) velocity outputs. In all cases the radial offsets show Gaussian distributions that are well reproduced by the radial diffusive solution. Maximum diffusivities of 4630–4980 m2 s−1 happen in the upper 200 m of the water column and minimum values of 1080–1270 m2 s−1 occur between 1400 and 2000 m. The 15-m diffusivity is fairly constant in latitude (3850–5270 m2 s−1), but the 1000-m diffusivity decreases from 1640 to 1820 m2 s−1 north of the Polar Front to 530 m2 s−1 south of the Southern Boundary. A comparison with other diffusivity studies validates the good adequacy of the ROD method for numerical and field applications.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Anna Olivé Abelló, aolive@icm.csic.es; Josep L. Pelegrí, pelegri@icm.csic.es

Supplementary Materials

    • Supplemental Materials (PDF 1.2173 MB)
Save
  • Abernathey, R. P., and J. Marshall, 2013: Global surface eddy diffusivities derived from satellite altimetry. J. Geophys. Res. Oceans, 118, 901916, https://doi.org/10.1002/jgrc.20066.

    • Search Google Scholar
    • Export Citation
  • Argo, 2000: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). SEANOE, accessed 19 August 2022, https://doi.org/10.17882/42182.

  • Artana, C., and Coauthors, 2018: Fronts of the Malvinas Current system: Surface and subsurface expressions revealed by satellite altimetry, Argo floats, and Mercator operational model outputs. J. Geophys. Res. Oceans, 123, 52615285, https://doi.org/10.1029/2018JC013887.

    • Search Google Scholar
    • Export Citation
  • Babiano, A., C. Basdevant, P. Le Roy, and R. Sadourny, 1990: Relative dispersion in two-dimensional turbulence. J. Fluid Mech., 214, 535557, https://doi.org/10.1017/S0022112090000258.

    • Search Google Scholar
    • Export Citation
  • Balwada, D., K. G. Speer, J. H. LaCasce, W. B. Owens, J. Marshall, and R. Ferrari, 2016: Circulation and stirring in the southeast Pacific Ocean and the Scotia Sea sectors of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 46, 20052027, https://doi.org/10.1175/JPO-D-15-0207.1.

    • Search Google Scholar
    • Export Citation
  • Balwada, D., J. H. LaCasce, K. G. Speer, and R. Ferrari, 2021: Relative dispersion in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 51, 553574, https://doi.org/10.1175/JPO-D-19-0243.1.

    • Search Google Scholar
    • Export Citation
  • Boland, E. J. D., E. Shuckburgh, P. H. Haynes, J. R. Ledwell, M.-J. Messias, and A. J. Watson, 2015: Estimating a submesoscale diffusivity using a roughness measure applied to a tracer release experiment in the Southern Ocean. J. Phys. Oceanogr., 45, 16101631, https://doi.org/10.1175/JPO-D-14-0047.1.

    • Search Google Scholar
    • Export Citation
  • Chiswell, S. M., 2013: Lagrangian time scales and eddy diffusivity at 1000 m compared to the surface in the South Pacific and Indian Oceans. J. Phys. Oceanogr., 43, 27182732, https://doi.org/10.1175/JPO-D-13-044.1.

    • Search Google Scholar
    • Export Citation
  • CLS, 2011: Argos user’s manual. CLS, http://www.argos-system.org/manual/.

  • Cole, S. T., C. Wortham, E. Kunze, and W. B. Owens, 2015: Eddy stirring and horizontal diffusivity from Argo float observations: Geographic and depth variability. Geophys. Res. Lett., 42, 39893997, https://doi.org/10.1002/2015GL063827.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1987: Modeling eddy transport of passive tracers. J. Mar. Res., 45, 635666, https://doi.org/10.1357/002224087788326803.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1991a: Lagrangian ocean studies. Annu. Rev. Fluid Mech., 23, 4364, https://doi.org/10.1146/annurev.fl.23.010191.000355.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1991b: Observing the general circulation with floats. Deep-Sea Res., 38A, S531S571, https://doi.org/10.1016/S0198-0149(12)80023-9.

    • Search Google Scholar
    • Export Citation
  • De Dominicis, M., G. Leuzzi, P. Monti, N. Pinardi, and P.-M. Poulain, 2012: Eddy diffusivity derived from drifter data for dispersion model applications. Ocean Dyn., 62, 13811398, https://doi.org/10.1007/s10236-012-0564-2.

    • Search Google Scholar
    • Export Citation
  • Delandmeter, P., and E. Van Sebille, 2019: The Parcels v2.0 Lagrangian framework: New field interpolation schemes. Geosci. Model Dev., 12, 35713584, https://doi.org/10.5194/gmd-12-3571-2019.

    • Search Google Scholar
    • Export Citation
  • Deng, Z.-C., Y.-C. Hon, and L. Yang, 2014: An optimal control method for nonlinear inverse diffusion coefficient problem. J. Optim. Theory Appl., 160, 890910, https://doi.org/10.1007/s10957-013-0302-z.

    • Search Google Scholar
    • Export Citation
  • Döös, K., V. Rupolo, and L. Brodeau, 2011: Dispersion of surface drifters and model-simulated trajectories. Ocean Modell., 39, 301310, https://doi.org/10.1016/j.ocemod.2011.05.005.

    • Search Google Scholar
    • Export Citation
  • Elipot, S., R. Lumpkin, R. C. Perez, J. M. Lilly, J. J. Early, and A. M. Sykulski, 2016: A global surface drifter dataset at hourly resolution. J. Geophys. Res. Oceans, 121, 29372966, https://doi.org/10.1002/2016JC011716.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 15011519, https://doi.org/10.1175/2010JPO4278.1.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1983: On the initial streakiness of a dispersing tracer in two- and three-dimensional turbulence. Dyn. Atmos. Oceans, 7, 265277, https://doi.org/10.1016/0377-0265(83)90008-8.

    • Search Google Scholar
    • Export Citation
  • Garric, G., and Coauthors, 2017: Performance and quality assessment of the global ocean eddy-permitting physical reanalysis GLORYS2V4. Proc. Eighth EuroGOOS Int. Conf., Bergen, Norway, EuroGOOS, 215–222.

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Graff, L. S., S. Guttu, and J. H. LaCasce, 2015: Relative dispersion in the atmosphere from reanalysis winds. J. Atmos. Sci., 72, 27692785, https://doi.org/10.1175/JAS-D-14-0225.1.

    • Search Google Scholar
    • Export Citation
  • Herbei, R., I. W. McKeague, and K. G. Speer, 2008: Gyres and jets: Inversion of tracer data for ocean circulation structure. J. Phys. Oceanogr., 38, 11801202, https://doi.org/10.1175/2007JPO3835.1.

    • Search Google Scholar
    • Export Citation
  • Jullion, L., K. J. Heywood, A. C. Naveira Garabato, and D. P. Stevens, 2010: Circulation and water mass modification in the Brazil–Malvinas Confluence. J. Phys. Oceanogr., 40, 845864, https://doi.org/10.1175/2009JPO4174.1.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2008: Statistics from Lagrangian observations. Prog. Oceanogr., 77, 129, https://doi.org/10.1016/j.pocean.2008.02.002.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2010: Relative displacement probability distribution functions from balloons and drifters. J. Mar. Res., 68, 433457, https://doi.org/10.1357/002224010794657155.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., R. Ferrari, J. Marshall, R. Tulloch, D. Balwada, and K. Speer, 2014: Float-derived isopycnal diffusivities in the DIMES experiment. J. Phys. Oceanogr., 44, 764780, https://doi.org/10.1175/JPO-D-13-0175.1.

    • Search Google Scholar
    • Export Citation
  • Lange, M., and E. van Sebille, 2017: Parcels v0.9: Prototyping a Lagrangian ocean analysis framework for the petascale age. Geosci. Model Dev., 10, 41754186, https://doi.org/10.5194/gmd-10-4175-2017.

    • Search Google Scholar
    • Export Citation
  • Lebedev, K. V., H. Yoshinari, N. A. Maximenko, and P. W. Hacker, 2007: YoMaHa’07: Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface. IPRC Tech. Note 4, 16 pp., http://apdrc.soest.hawaii.edu/projects/yomaha/yomaha07/YoMaHa070612.pdf.

  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1998: Mixing of a tracer in the pycnocline. J. Geophys. Res., 103, 21 49921 529, https://doi.org/10.1029/98JC01738.

    • Search Google Scholar
    • Export Citation
  • Lellouche, J.-M., and Coauthors, 2021: The Copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis. Front. Earth Sci., 9, 698876, https://doi.org/10.3389/feart.2021.698876.

    • Search Google Scholar
    • Export Citation
  • Mason, E., A. Pascual, P. Gaube, S. Ruiz, J. L. Pelegrí, and A. Delepoulle, 2017: Subregional characterization of mesoscale eddies across the Brazil-Malvinas Confluence. J. Geophys. Res. Oceans, 122, 33293357, https://doi.org/10.1002/2016JC012611.

    • Search Google Scholar
    • Export Citation
  • Mercator Ocean, 2018: Product sheet: Native grid product–reanalysis–global ocean–PHY–1/12°. Mercator Ocean International Doc., 2 pp., https://www.mercator-ocean.eu/wp-content/uploads/products_pdf/MOI_GLORYS12.pdf.

  • Mignac, D., D. Ferreira, and K. Haines, 2018: South Atlantic meridional transports from NEMO based simulations and reanalyses. Ocean Sci., 14, 5368, https://doi.org/10.5194/os-14-53-2018.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 1996: Two-dimensional mixing, edge formation, and permeability diagnosed in an area coordinate. J. Atmos. Sci., 53, 15241537, https://doi.org/10.1175/1520-0469(1996)053<1524:TDMEFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., D. P. Stevens, and K. J. Heywood, 2003: Water mass conversion, fluxes and mixing in the Scotia Sea diagnosed by an inverse model. J. Phys. Oceanogr., 33, 25652587, https://doi.org/10.1175/1520-0485(2003)033<2565:WMCFAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., D. P. Stevens, A. J. Watson, and W. Roether, 2007: Short-circuiting of the overturning circulation in the Antarctic Circumpolar Current. Nature, 447, 194197, https://doi.org/10.1038/nature05832.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., R. Ferrari, and K. L. Polzin, 2011: Eddy stirring in the Southern Ocean. J. Geophys. Res., 116, C09019, https://doi.org/10.1029/2010JC006818.

    • Search Google Scholar
    • Export Citation
  • Olivé Abelló, A., J. L. Pelegrí, F. J. Machín, and I. Vallès-Casanova, 2021: The transfer of Antarctic Circumpolar waters to the western South Atlantic Ocean. J. Geophys. Res. Oceans, 126, e2020JC017025, https://doi.org/10.1029/2020JC017025.

    • Search Google Scholar
    • Export Citation
  • Olivé Abelló, A., J. L. Pelegrí, and F. J. Machín, 2023: The radial offset by diffusion (ROD) method (v1.0.0). Zenodo, accessed 30 March 2023, https://doi.org/10.5281/zenodo.7449421.

  • Ollitrault, M., M. Lankhorst, D. Fratantoni, P. Richardson, and W. Zenk, 2006: Zonal intermediate currents in the equatorial Atlantic Ocean. Geophys. Res. Lett., 33, L05605, https://doi.org/10.1029/2005GL025368.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., T. Whitworth III, and W. D. Nowlin Jr., 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42, 641673, https://doi.org/10.1016/0967-0637(95)00021-W.

    • Search Google Scholar
    • Export Citation
  • Orúe-Echevarría, D., J. L. Pelegrí, F. Machín, A. Hernández‐Guerra, and M. Emelianov, 2019: Inverse modeling the Brazil‐Malvinas Confluence. J. Geophys. Res. Oceans, 124, 527554, https://doi.org/10.1029/2018JC014733.

    • Search Google Scholar
    • Export Citation
  • Orúe-Echevarría, D., and Coauthors, 2021: A view of the Brazil-Malvinas Confluence, March 2015. Deep-Sea Res. I, 172, 103533, https://doi.org/10.1016/j.dsr.2021.103533.

    • Search Google Scholar
    • Export Citation
  • Peña‐Izquierdo, J., E. van Sebille, J. L. Pelegrí, J. Sprintall, E. Mason, P. J. Llanillo, and F. Machín, 2015: Water mass pathways to the North Atlantic oxygen minimum zone. J. Geophys. Res. Oceans, 120, 33503372, https://doi.org/10.1002/2014JC010557.

    • Search Google Scholar
    • Export Citation
  • Reeve, K. A., O. Boebel, V. Strass, T. Kanzow, and R. Gerdes, 2019: Horizontal circulation and volume transports in the Weddell Gyre derived from Argo float data. Prog. Oceanogr., 175, 263283, https://doi.org/10.1016/j.pocean.2019.04.006.

    • Search Google Scholar
    • Export Citation
  • Roach, C. J., D. Balwada, and K. Speer, 2016: Horizontal mixing in the Southern Ocean from Argo float trajectories. J. Geophys. Res. Oceans, 121, 55705586, https://doi.org/10.1002/2015JC011440.

    • Search Google Scholar
    • Export Citation
  • Roach, L. A., C. Horvat, S. M. Dean, and C. M. Bitz, 2018: An emergent sea ice floe size distribution in a global coupled ocean‐sea ice model. J. Geophys. Res. Oceans, 123, 43224337, https://doi.org/10.1029/2017JC013692.

    • Search Google Scholar
    • Export Citation
  • Roberts, M., and D. Marshall, 1998: Do we require adiabatic dissipation schemes in eddy-resolving ocean models? J. Phys. Oceanogr., 28, 20502063, https://doi.org/10.1175/1520-0485(1998)028<2050:DWRADS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Coauthors, 2022: The Argo program. Partnerships in Marine Research: Case Studies, Lessons Learned, and Policy Implications, G. Auad and F. K. Wiese, Eds., Science of Sustainable Systems, Elsevier, 53–69.

  • Rosell-Fieschi, M., J. L. Pelegrí, and J. Gourrion, 2015: Zonal jets in the equatorial Atlantic Ocean. Prog. Oceanogr., 130, 118, https://doi.org/10.1016/j.pocean.2014.08.008.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., D. Dorson, and J. Fontaine, 1986: The RAFOS system. J. Atmos. Oceanic Technol., 3, 672679, https://doi.org/10.1175/1520-0426(1986)003<0672:TRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rühs, S., V. Zhurbas, I. M. Koszalka, J. V. Durgadoo, and A. Biastoch, 2018: Eddy diffusivity estimates from Lagrangian trajectories simulated with ocean models and surface drifter data—A case study for the greater Agulhas system. J. Phys. Oceanogr., 48, 175196, https://doi.org/10.1175/JPO-D-17-0048.1.

    • Search Google Scholar
    • Export Citation
  • Russell, J. L., K. W. Dixon, A. Gnanadesikan, R. J. Stouffer, and J. R. Toggweiler, 2006: The Southern Hemisphere westerlies in a warming world: Propping open the door to the deep ocean. J. Climate, 19, 63826390, https://doi.org/10.1175/JCLI3984.1.

    • Search Google Scholar
    • Export Citation
  • Sallée, J., K. Speer, and S. R. Rintoul, 2011: Mean-flow and topographic control on surface eddy-mixing in the Southern Ocean. J. Mar. Res., 69, 753777, https://doi.org/10.1357/002224011799849408.

    • Search Google Scholar
    • Export Citation
  • Skeel, R. D., and M. Berzins, 1990: A method for the spatial discretization of parabolic equations in one space variable. SIAM J. Sci. Stat. Comput., 11 (1), 132, https://doi.org/10.1137/0911001.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., and S. R. Rintoul, 2007: Multiple jets of the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 37, 13941412, https://doi.org/10.1175/JPO3111.1.

    • Search Google Scholar
    • Export Citation
  • Sundermeyer, M. A., and J. F. Price, 1998: Lateral mixing and the North Atlantic Tracer Release Experiment: Observations and numerical simulations of Lagrangian particles and a passive tracer. J. Geophys. Res., 103, 21 48121 497, https://doi.org/10.1029/98JC01999.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and Coauthors, 2014: Direct estimate of lateral eddy diffusivity upstream of Drake Passage. J. Phys. Oceanogr., 44, 25932616, https://doi.org/10.1175/JPO-D-13-0120.1.

    • Search Google Scholar
    • Export Citation
  • Vallès-Casanova, I., E. Fraile-Nuez, M. Martín-Rey, E. van Sebille, A. Cabré, A. Olivé-Abelló, and J. L. Pelegrí, 2022: Water mass transports and pathways in the North Brazil–equatorial undercurrent retroflection. J. Geophys. Res. Oceans, 127, e2021JC018150, https://doi.org/10.1029/2021JC018150.

    • Search Google Scholar
    • Export Citation
  • Vernet, M., and Coauthors, 2019: The Weddell Gyre, Southern Ocean: Present knowledge and future challenges. Rev. Geophys., 57, 623708, https://doi.org/10.1029/2018RG000604.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, K., S. Aoki, K. Katsumata, D. Hirano, and Y. Nakayama, 2021: Multidecadal poleward shift of the southern boundary of the Antarctic Circumpolar Current off East Antarctica. Sci. Adv., 7, eabf8755, https://doi.org/10.1126/sciadv.abf8755.

    • Search Google Scholar
    • Export Citation
  • Zhurbas, V., and I. S. Oh, 2003: Lateral diffusivity and Lagrangian scales in the Pacific Ocean as derived from drifter data. J. Geophys. Res., 108, 3141, https://doi.org/10.1029/2002JC001596.

    • Search Google Scholar
    • Export Citation
  • Zhurbas, V., D. A. Lyzhkov, and N. P. Kuzmina, 2014: Estimates of the lateral eddy diffusivity in the Indian Ocean as derived from drifter data. Oceanology, 54, 281288, https://doi.org/10.1134/S0001437014030163.

    • Search Google Scholar
    • Export Citation
  • Zika, J. D., T. J. McDougall, and B. M. Sloyan, 2010: A tracer-contour inverse method for estimating ocean circulation and mixing. J. Phys. Oceanogr., 40, 2647, https://doi.org/10.1175/2009JPO4208.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 561 561 24
Full Text Views 229 229 3
PDF Downloads 252 252 6