PixPol: An In-Water Multispectral Polarized Upwelling Radiance Distribution Camera System

E. Riley Blocker aDepartment of Physics, University of Miami, Coral Gables, Florida
bOcean Ecology Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
cScience Systems and Applications, Inc., Lanham, Maryland

Search for other papers by E. Riley Blocker in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3278-4527
and
Kenneth J. Voss aDepartment of Physics, University of Miami, Coral Gables, Florida

Search for other papers by Kenneth J. Voss in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7860-5080
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

PixPol is an in-water multispectral polarized upwelling radiance distribution fisheye camera system. Its imaging sensors utilize a pixel-level polarizer structure allowing for polarimetric retrieval from one image capture, offering an advantage compared to other in-water polarimetric fisheye camera systems that require information from multiple images. When submerged, PixPol images a scene from which the first three Stokes parameters are derived at an angular resolution of 1° within a field of view that encompasses all azimuthal angles up to an elevation of 43° from nadir. For all viewing angles, Stokes parameter I and the linear polarization parameters, Q/I and U/I, are retrieved with an interpixel uncertainty of ±5%, ±0.02%, and ±0.02%, respectively. From these parameters, an uncertainty of ±0.01 is attained for the degree of linear polarization and ±0.9° for the angle of linear polarization. A description of the camera system, its radiometric and polarization calibration, and the associated uncertainties are described. Example images of the distribution of downwelling polarized light in the sky just above the ocean’s surface and upwelling polarized light just below the surface are provided.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: E. Riley Blocker, edward.r.blocker@nasa.gov

Abstract

PixPol is an in-water multispectral polarized upwelling radiance distribution fisheye camera system. Its imaging sensors utilize a pixel-level polarizer structure allowing for polarimetric retrieval from one image capture, offering an advantage compared to other in-water polarimetric fisheye camera systems that require information from multiple images. When submerged, PixPol images a scene from which the first three Stokes parameters are derived at an angular resolution of 1° within a field of view that encompasses all azimuthal angles up to an elevation of 43° from nadir. For all viewing angles, Stokes parameter I and the linear polarization parameters, Q/I and U/I, are retrieved with an interpixel uncertainty of ±5%, ±0.02%, and ±0.02%, respectively. From these parameters, an uncertainty of ±0.01 is attained for the degree of linear polarization and ±0.9° for the angle of linear polarization. A description of the camera system, its radiometric and polarization calibration, and the associated uncertainties are described. Example images of the distribution of downwelling polarized light in the sky just above the ocean’s surface and upwelling polarized light just below the surface are provided.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: E. Riley Blocker, edward.r.blocker@nasa.gov
Save
  • Bhandari, P., K. J. Voss, L. Logan, and M. Twardowski, 2011: The variation of the polarized downwelling radiance distribution with depth in the coastal and clear ocean. J. Geophys. Res., 116, C00H10, https://doi.org/10.1029/2011JC007320.

    • Search Google Scholar
    • Export Citation
  • Blaber, J., 2019: multi_pyspin (version 1.0.0). GitHub, accessed 28 May 2020, https://github.com/justinblaber/multi_pyspin.

  • Blocker, E. R., 2023: Measurement of the polarization of daylight upwelling in the sea. Ph.D. thesis, University of Miami, 188 pp.

  • Blocker, E. R., and K. J. Voss, 2024: Rotation of reference frame dependent polarimetric variables for equidistant fisheye lens projections. Appl. Opt., 63, 26892693, https://doi.org/10.1364/AO.519772.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and D. R. Huffman, 2008: Absorption and Scattering of Light by Small Particles. John Wiley and Sons, 544 pp.

  • Born, M., and E. Wolf, 1999: Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. Historical Introduction, M. Born and E. Wolf, Eds., Cambridge University Press, 25–34.

  • Chowdhary, J., B. Cairns, and L. D. Travis, 2006: Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: Bio-optical model results for case 1 waters. Appl. Opt., 45, 55425567, https://doi.org/10.1364/AO.45.005542.

    • Search Google Scholar
    • Export Citation
  • Cronin, T. W., and N. Shashar, 2001: The linearly polarized light field in clear, tropical marine waters: Spatial and temporal variation of light intensity, degree of polarization and e-vector angle. J. Exp. Biol., 204, 24612467, https://doi.org/10.1242/jeb.204.14.2461.

    • Search Google Scholar
    • Export Citation
  • Ivanoff, A., 1957: Contribution à l’étude des propriétés optiques de l’eau de mer en bretagne et en corse, et à la théorie de la polarisation sous-marine. Ann. Geophys., 13, 2253.

    • Search Google Scholar
    • Export Citation
  • Ivanoff, A., 1974a: Polarization measurements in the sea. Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, Eds., Academic Press, 151–175.

  • Ivanoff, A., 1974b: Polarization of underwater light. Optical Aspects of Oceanography, N. Jerlov and E. Nielsen, Eds., Academic Press, 158–175.

  • Ivanoff, A., and T. H. Waterman, 1958: Factors, mainly depth and wavelength, affecting the degree of underwater light polarization. J. Mar. Res., 16, 283307.

    • Search Google Scholar
    • Export Citation
  • Jackson, J. D., 1998: Classical Electrodynamics. Wiley, 808 pp.

  • Jerlov, N., 1976: Chapter 11 polarization of underwater radiant energy. Marine Optics, N. G. Jerlov, Ed., Elsevier Oceanography Series, Vol. 14, Elsevier, 151–155, https://doi.org/10.1016/S0422-9894(08)70803-1.

  • Kattawar, G. W., and C. N. Adams, 1989: Stokes vector calculations of the submarine light field in an atmosphere-ocean with scattering according to a Rayleigh phase matrix: Effect of interface refractive index on radiance and polarization. Limnol. Oceanogr., 34, 14531472, https://doi.org/10.4319/lo.1989.34.8.1453.

    • Search Google Scholar
    • Export Citation
  • Lundgren, B., 1971: On the polarization of the daylight in the sea. Københavns Universitet, Institut for Fysisk Oceanografi, 17, 1–34.

  • Mishchenko, M. I., L. D. Travis, and A. A. Lacis, 2002: Scattering, Absorption, and Emission of Light by Small Particles. Cambridge University Press, 445 pp.

  • Miyamoto, K., 1964: Fish eye lens. J. Opt. Soc. Amer., 54, 10601061, https://doi.org/10.1364/JOSA.54.001060.

  • Sabbah, S., and N. Shashar, 2006: Underwater light polarization and radiance fluctuations induced by surface waves. Appl. Opt., 45, 47264739, https://doi.org/10.1364/AO.45.004726.

    • Search Google Scholar
    • Export Citation
  • Sabbah, S., and N. Shashar, 2007: Light polarization under water near sunrise. J. Opt. Soc. Amer., 24, 20492056, https://doi.org/10.1364/JOSAA.24.002049.

    • Search Google Scholar
    • Export Citation
  • Sabbah, S., A. Barta, J. Gál, G. Horváth, and N. Shashar, 2006: Experimental and theoretical study of skylight polarization transmitted through Snell’s window of a flat water surface. J. Opt. Soc. Amer., 23, 19781988, https://doi.org/10.1364/JOSAA.23.001978.

    • Search Google Scholar
    • Export Citation
  • Shashar, N., S. Sabbah, and T. W. Cronin, 2004: Transmission of linearly polarized light in seawater: Implications for polarization signaling. J. Exp. Biol., 207, 36193628, https://doi.org/10.1242/jeb.01187.

    • Search Google Scholar
    • Export Citation
  • Smith, R. C., R. W. Austin, and J. E. Tyler, 1970: An oceanographic radiance distribution camera system. Appl. Opt., 9, 20152022, https://doi.org/10.1364/AO.9.002015.

    • Search Google Scholar
    • Export Citation
  • Stone, J. M., 1963: Radiation and Optics: An Introduction to the Classical Theory. McGraw-Hill, 544 pp.

  • Taylor, J. R., 1997: Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books, 327 pp.

  • Timofeeva, V. A., 1962: Spatial distribution of the degree of polarization of natural light in the sea. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 12, 11601164.

    • Search Google Scholar
    • Export Citation
  • Timofeeva, V. A., and L. A. Koveshnikova, 1966: Experimental determination of the coefficient of extinction in turbid media. Izv. Atm. Oc. Phys., 2, 194196.

    • Search Google Scholar
    • Export Citation
  • Tonizzo, A., and Coauthors, 2009: Polarized light in coastal waters: Hyperspectral and multiangular analysis. Opt. Express, 17, 56665683, https://doi.org/10.1364/OE.17.005666.

    • Search Google Scholar
    • Export Citation
  • van de Hulst, H. C., 1981: Light Scattering by Small Particles. Dover Publications, 470 pp.

  • Voss, K. J., 1989: Electra-optic camera system for measurement of the underwater radiance distribution. Opt. Eng., 28, 283241, https://doi.org/10.1117/12.7976940.

    • Search Google Scholar
    • Export Citation
  • Voss, K. J., and G. Zibordi, 1989: Radiometric and geometric calibration of a visible spectral electro-optic “fisheye” camera radiance distribution system. J. Atmos. Oceanic Technol., 6, 652662, https://doi.org/10.1175/1520-0426(1989)006<0652:RAGCOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Voss, K. J., and A. L. Chapin, 1992: Next-generation in-water radiance distribution camera system. Proc. SPIE, 1750, 384387, https://doi.org/10.1117/12.140665.

    • Search Google Scholar
    • Export Citation
  • Voss, K. J., and Y. Liu, 1997: Polarized radiance distribution measurements of skylight. I. System description and characterization. Appl. Opt., 36, 60836094, https://doi.org/10.1364/AO.36.006083.

    • Search Google Scholar
    • Export Citation
  • Voss, K. J., and A. L. Chapin, 2005: Upwelling radiance distribution camera system, NURADS. Opt. Express, 13, 42504262, https://doi.org/10.1364/OPEX.13.004250.

    • Search Google Scholar
    • Export Citation
  • Voss, K. J., and N. Souaidia, 2010: POLRADS: Polarization radiance distribution measurement system. Opt. Express, 18, 19 67219 680, https://doi.org/10.1364/OE.18.019672.

    • Search Google Scholar
    • Export Citation
  • Voss, K. J., A. C. R. Gleason, H. R. Gordon, G. W. Kattawar, and Y. You, 2011: Observation of non-principal plane neutral points in the in-water upwelling polarized light field. Opt. Express, 19, 59425952, https://doi.org/10.1364/OE.19.005942.

    • Search Google Scholar
    • Export Citation
  • Waterman, T. H., 1954: Polarization patterns in submarine illumination. Science, 120, 927932, https://doi.org/10.1126/science.120.3127.927.

    • Search Google Scholar
    • Export Citation
  • Waterman, T. H., 1955: Polarization of scattered sunlight in deep water. Papers in Marine Biology and Oceanography, Pergamon Press, 426–434, https://www.vliz.be/imisdocs/publications/302828.pdf.

  • York, T., and V. Gruev, 2012: Characterization of a visible spectrum division-of-focal-plane polarimeter. Appl. Opt., 51, 53925400, https://doi.org/10.1364/AO.51.005392.

    • Search Google Scholar
    • Export Citation
  • Zhai, P.-W., G. W. Kattawar, and Y. Hu, 2012: Comment on the transmission matrix for a dielectric interface. J. Quant. Spectrosc. Radiat. Transfer, 113, 19811984, https://doi.org/10.1016/j.jqsrt.2012.07.001.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1767 1767 745
Full Text Views 159 159 14
PDF Downloads 134 134 11