The Near-Infrared Airglow Camera on the International Space Station

L. J. Gelinas aSpace Sciences Applications Laboratory, The Aerospace Corporation, El Segundo, California

Search for other papers by L. J. Gelinas in
Current site
Google Scholar
PubMed
Close
,
J. H. Hecht aSpace Sciences Applications Laboratory, The Aerospace Corporation, El Segundo, California

Search for other papers by J. H. Hecht in
Current site
Google Scholar
PubMed
Close
, and
R. J. Rudy aSpace Sciences Applications Laboratory, The Aerospace Corporation, El Segundo, California
bKookoosint Scientific, Camarillo, California

Search for other papers by R. J. Rudy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The OH airglow layer is a persistent feature of Earth’s upper mesosphere, centered near 87 km altitude, that can be perturbed by atmospheric gravity waves (AGWs) and instabilities. While ground-based airglow imaging has been used to study these perturbations locally, this technique is limited by tropospheric weather. Space-based remote sensing provides a platform to measure these processes globally. In addition, portions of the OH airglow band span an atmospheric window, allowing airglow illumination of the ground for imaging of nighttime clouds and Earth terrain features. The Near-Infrared Airglow Camera (NIRAC) images the airglow at 1.6 μm and while deployed to the International Space Station (ISS) from May 2019 to November 2021 demonstrated these applications. The camera uses a patented motion-compensation system with a custom rectilinear lens that allows multisecond, nearly smear-free imaging (∼<1.5 pixels) at a ground pixel resolution of ∼83 m. With a ∼170 km × 170 km ground swath, NIRAC acquires overlapping images at a 7–10-s cadence. Parallax considerations enable detection of both AGWs and instabilities in the airglow, and scenes can be analyzed for terrain and cloud height. NIRAC also has a short-exposure daytime mode for cloud and ground imagery. This study describes NIRAC and its operations on the ISS and presents imagery examples of Earth terrain and surface phenomenology (such as fires), cloud imagery at all moon phases day and night, and the nighttime detection of AGWs and instabilities above 80 km altitude.

Significance Statement

The Near-Infrared Airglow Camera (NIRAC) is the first space-based instrument to exploit the bright 1.6 μm OH Meinel airglow emission band for Earth surface imager at resolution of ∼83 m. During its 2.5-yr deployment on the International Space Station (ISS), NIRAC obtained over a half million images of Earth’s surface and OH airglow layer. NIRAC has been able to capture images of the very small-scale (<30 km) AGWs and instabilities under a wide range of viewing conditions, including (i) in the vicinity of city lights, (ii) over complex cloud scenes, and (iii) under both moondown and moonup illumination. NIRAC also acquired daytime and nighttime images of clouds, hurricanes and typhoons, human lighting, and forest fires in the 1.6 μm band.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: L. J. Gelinas, lynette.j.gelinas@aero.org

Abstract

The OH airglow layer is a persistent feature of Earth’s upper mesosphere, centered near 87 km altitude, that can be perturbed by atmospheric gravity waves (AGWs) and instabilities. While ground-based airglow imaging has been used to study these perturbations locally, this technique is limited by tropospheric weather. Space-based remote sensing provides a platform to measure these processes globally. In addition, portions of the OH airglow band span an atmospheric window, allowing airglow illumination of the ground for imaging of nighttime clouds and Earth terrain features. The Near-Infrared Airglow Camera (NIRAC) images the airglow at 1.6 μm and while deployed to the International Space Station (ISS) from May 2019 to November 2021 demonstrated these applications. The camera uses a patented motion-compensation system with a custom rectilinear lens that allows multisecond, nearly smear-free imaging (∼<1.5 pixels) at a ground pixel resolution of ∼83 m. With a ∼170 km × 170 km ground swath, NIRAC acquires overlapping images at a 7–10-s cadence. Parallax considerations enable detection of both AGWs and instabilities in the airglow, and scenes can be analyzed for terrain and cloud height. NIRAC also has a short-exposure daytime mode for cloud and ground imagery. This study describes NIRAC and its operations on the ISS and presents imagery examples of Earth terrain and surface phenomenology (such as fires), cloud imagery at all moon phases day and night, and the nighttime detection of AGWs and instabilities above 80 km altitude.

Significance Statement

The Near-Infrared Airglow Camera (NIRAC) is the first space-based instrument to exploit the bright 1.6 μm OH Meinel airglow emission band for Earth surface imager at resolution of ∼83 m. During its 2.5-yr deployment on the International Space Station (ISS), NIRAC obtained over a half million images of Earth’s surface and OH airglow layer. NIRAC has been able to capture images of the very small-scale (<30 km) AGWs and instabilities under a wide range of viewing conditions, including (i) in the vicinity of city lights, (ii) over complex cloud scenes, and (iii) under both moondown and moonup illumination. NIRAC also acquired daytime and nighttime images of clouds, hurricanes and typhoons, human lighting, and forest fires in the 1.6 μm band.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: L. J. Gelinas, lynette.j.gelinas@aero.org
Save
  • Abatzoglou, J. T., D. E. Rupp, L. W. O’Neill, and M. Sadegh, 2021: Compound extremes drive the western Oregon wildfires of September 2020. Geophys. Res. Lett., 48, e2021GL092520, https://doi.org/10.1029/2021GL092520.

    • Search Google Scholar
    • Export Citation
  • Cao, B., and A. Z. Liu, 2022: Statistical characteristics of high-frequency gravity waves observed by an airglow imager at Andes Lidar Observatory. Earth Space Sci., 9, e2022EA002256, https://doi.org/10.1029/2022EA002256.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., S. Sun-Mack, R. Arduini, and P. Minnis, 2006: Clear-sky and surface narrowband albedo variations derived from VIRS and MODIS data. 12th Conf. on Atmospheric Radiation, Madison, WI, Amer. Meteor. Soc., 5.6, https://ams.confex.com/ams/Madison2006/techprogram/paper_113228.htm.

  • Coddington, O., P. Pilewskie, K. S. Schmidt, P. J. McBride, and T. Vukicevic, 2013: Characterizing a new surface-based shortwave cloud retrieval technique, based on transmitted radiance for soil and vegetated surface types. Atmosphere, 4, 4871, https://doi.org/10.3390/atmos4010048.

    • Search Google Scholar
    • Export Citation
  • Dozier, J., R. O. Green, A. W. Nolin, and T. H. Painter, 2009: Interpretation of snow properties from imaging spectrometry. Remote Sens. Environ., 113 (Suppl. 1), S25S37, https://doi.org/10.1016/j.rse.2007.07.029.

    • Search Google Scholar
    • Export Citation
  • Fowler, A. M., and I. Gatley, 1990: Demonstration of an algorithm for read-noise reduction in infrared arrays. Astrophys. J., 353, L33, https://doi.org/10.1086/185701.

    • Search Google Scholar
    • Export Citation
  • Franzen, C., R. E. Hibbins, P. J. Espy, and A. A. Djupvik, 2017: Optimizing hydroxyl airglow retrievals from long-slit astronomical spectroscopic observations. Atmos. Meas. Tech., 10, 30933101, https://doi.org/10.5194/amt-10-3093-2017.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and Coauthors, 2017: High-resolution observations and modeling of turbulence sources, structures, and intensities in the upper mesosphere. J. Atmos. Sol.-Terr. Phys., 162, 5778, https://doi.org/10.1016/j.jastp.2016.11.006.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and Coauthors, 2019: PMC Turbo: Studying gravity wave and instability dynamics in the summer mesosphere using polar mesospheric cloud imaging and profiling from a stratospheric balloon. J. Geophys. Res. Atmos., 124, 64236443, https://doi.org/10.1029/2019JD030298.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., S. A. Wieland, T. S. Lund, S. A. Thorpe, and J. H. Hecht, 2021: Kelvin-Helmholtz billow interactions and instabilities in the mesosphere over the Andes Lidar Observatory: 2. Modeling and interpretation. J. Geophys. Res. Atmos., 126, e2020JD033412, https://doi.org/10.1029/2020JD033412.

    • Search Google Scholar
    • Export Citation
  • Gardner, C. S., 1991: Introduction to ALOHA-90: The airborne lidar and observations of the Hawaiian Airglow campaign. Geophys. Res. Lett., 18, 13131316, https://doi.org/10.1029/91GL01294.

    • Search Google Scholar
    • Export Citation
  • Gardner, C. S., 1995: Introduction to ALOHA/ANLC-93: The 1993 Airborne Lidar and Observations of the Hawaiian Airglow/Airborne Noctilucent Cloud campaigns. Geophys. Res. Lett., 22, 27892792, https://doi.org/10.1029/95GL02782.

    • Search Google Scholar
    • Export Citation
  • Gelinas, L. J., J. H. Hecht, R. L. Walterscheid, R. G. Roble, and J. M. Woithe, 2008: A seasonal study of mesospheric temperatures and emission intensities at Adelaide and Alice Springs. J. Geophys. Res., 113, A01304, https://doi.org/10.1029/2007JA012587.

    • Search Google Scholar
    • Export Citation
  • Hecht, J. H., 2004: Instability layers and airglow imaging. Rev. Geophys., 42, RG1001, https://doi.org/10.1029/2003RG000131.

  • Hecht, J. H., A. Liu, R. Walterscheid, S. Franke, R. Rudy, M. Taylor, and P.-D. Pautet, 2007: Characteristics of short-period wavelike features near 87 km altitude from airglow and lidar observations over Maui. J. Geophys. Res., 112, D16101, https://doi.org/10.1029/2006JD008148.

    • Search Google Scholar
    • Export Citation
  • Hecht, J. H., D. W. Warren, and D. J. Gutierrez, 2018: Methods and systems for motion compensation and stereoscopic images generation. U.S. Patent 10 109 070 B1, 24 pp.

  • Hecht, J. H., D. C. Fritts, L. J. Gelinas, R. J. Rudy, R. L. Walterscheid, and A. Z. Liu, 2021: Kelvin-Helmholtz billow interactions and instabilities in the mesosphere over the Andes Lidar Observatory: 1. Observations. J. Geophys. Res. Atmos., 126, e2020JD033414, https://doi.org/10.1029/2020JD033414.

    • Search Google Scholar
    • Export Citation
  • Hecht, J. H., L. J. Gelinas, R. J. Rudy, and R. L. Walterscheid, 2023: Atmospheric gravity wave and instability observations from the International Space Station using the Near Infrared Airglow Camera (NIRAC). J. Geophys. Res. Atmos., 128, e2023JD039070, https://doi.org/10.1029/2023JD039070.

    • Search Google Scholar
    • Export Citation
  • Kjellstrand, C. B., and Coauthors, 2020: The PMC Turbo balloon mission to measure gravity waves and turbulence in polar mesospheric clouds: Camera, telemetry, and software performance. Earth Space Sci., 7, e2020EA001238, https://doi.org/10.1029/2020EA001238.

    • Search Google Scholar
    • Export Citation
  • Larsen, M., 2002: Winds and shears in the mesosphere and lower thermosphere: Results from four decades of chemical release wind measurements. J. Geophys. Res., 107, 1215, https://doi.org/10.1029/2001JA000218.

    • Search Google Scholar
    • Export Citation
  • Li, T., C. Y. She, B. P. Williams, T. Yuan, R. L. Collins, L. M. Kieffaber, and A. W. Peterson, 2005: Concurrent OH imager and sodium temperature/wind lidar observation of localized ripples over northern Colorado. J. Geophys. Res., 110, D13110, https://doi.org/10.1029/2004JD004885.

    • Search Google Scholar
    • Export Citation
  • Li, Z., A. Z. Liu, X. Lu, G. R. Swenson, and S. J. Franke, 2011: Gravity wave characteristics from OH airglow imager over Maui. J. Geophys. Res., 116, D22115, https://doi.org/10.1029/2011JD015870.

    • Search Google Scholar
    • Export Citation
  • Liu, H. L., 2019: Quantifying gravity wave forcing using scale invariance. Nat. Commun., 10, 2605, https://doi.org/10.1038/s41467-019-10527-z.

    • Search Google Scholar
    • Export Citation
  • Meinel, I. A. B., 1950: OH emission bands in the spectrum of the night sky. Astrophys. J., 111, 555564, https://doi.org/10.1086/145296.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., S. P. Mills, C. D. Elvidge, D. T. Lindsey, T. F. Lee, and J. D. Hawkins, 2012: Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities. Proc. Natl. Acad. Sci. USA, 109, 15 70615 711, https://doi.org/10.1073/pnas.1207034109.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., and Coauthors, 2013: Illuminating the capabilities Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) day/night band. Remote Sens., 5, 67176766, https://doi.org/10.3390/rs5126717.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., W. C. Straka III, J. Yue, S. M. Smith, M. J. Alexander, L. Hoffmann, M. Setvák, and P. T. Partain, 2015: Upper atmospheric gravity wave details revealed in nightglow satellite imagery. Proc. Natl. Acad. Sci. USA, 112, E6728E6735, https://doi.org/10.1073/pnas.1508084112.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., W. C. Straka III, J. Yue, C. J. Seaman, S. Xu, C. D. Elvidge, L. Hoffmann, and I. Azeem, 2019: The dark side of Hurricane Matthew: Unique perspectives from the VIIRS day/night band. Bull. Amer. Meteor. Soc., 99, 25612574, https://doi.org/10.1175/BAMS-D-17-0097.1.

    • Search Google Scholar
    • Export Citation
  • Min, M., J. Zheng, P. Zhang, X. Hu, C. Lin, L. Xi, H. Yu, and Z. Lin, 2020: A low-light radiative transfer model for satellite observations of moon light and Earth surface light at night. J. Quant. Spectrosc. Radiat. Transfer, 247, 106954, https://doi.org/10.1016/j.jqsrt.2020.106954.

    • Search Google Scholar
    • Export Citation
  • Nakamura, T., A. Higashikawa, T. Tsuda, and Y. Matsushita, 1999: Seasonal variations of gravity wave structures in OH airglow with a CCD imager at Shigaraki. Earth Planets Space, 51, 897906, https://doi.org/10.1186/BF03353248.

    • Search Google Scholar
    • Export Citation
  • Pautet, P.-D., M. J. Taylor, S. D. Eckermann, and N. Criddle, 2019: Regional distribution of mesospheric small-scale gravity waves during DEEPWAVE. J. Geophys. Res. Atmos., 124, 70697081, https://doi.org/10.1029/2019JD030271.

    • Search Google Scholar
    • Export Citation
  • Perwitasari, S., and Coauthors, 2015: Coordinated airglow observations between IMAP/VISI and a ground-based all-sky imager on concentric gravity wave in the mesopause. J. Geophys. Res. Space Phys., 120, 97069721, https://doi.org/10.1002/2015JA021424.

    • Search Google Scholar
    • Export Citation
  • Perwitasari, S., T. Sakanoi, T. Nakamura, M. K. Ejiri, M. Tsutsumi, Y. Tomikawa, and A. Saito, 2016: Three years of concentric gravity wave variability in the mesopause as observed by IMAP/VISI. Geophys. Res. Lett., 43, 11 52811 535, https://doi.org/10.1002/2016GL071511.

    • Search Google Scholar
    • Export Citation
  • Peterson, A. W., and L. M. Kieffaber, 1973: Infrared photography of OH airglow structures. Nature, 242, 321322, https://doi.org/10.1038/242321a0.

    • Search Google Scholar
    • Export Citation
  • Powell, S. L., D. Pflugmacher, A. A. Kirschbaum, Y. Kim, and W. B. Cohen, 2007: Moderate resolution remote sensing alternatives: A review of Landsat-like sensors and their applications. J. Appl. Remote Sens., 1, 012506, https://doi.org/10.1117/1.2819342.

    • Search Google Scholar
    • Export Citation
  • Rauscher, B. J., 2015: Teledyne H1RG, H2RG, and H4RG noise generator. Publ. Astron. Soc. Pac., 127, 11441151, https://doi.org/10.1086/684082.

    • Search Google Scholar
    • Export Citation
  • Reid, I. M., 1986: Gravity wave motions in the upper middle atmosphere (60–110 km). J. Atmos. Terr. Phys., 48, 10571072, https://doi.org/10.1016/0021-9169(86)90026-7.

    • Search Google Scholar
    • Export Citation
  • Sakanoi, T., Y. Akiya, A. Yamazaki, Y. Otsuka, A. Saito, and I. Yoshikawa, 2011: Imaging observation of the Earth’s mesosphere, thermosphere and ionosphere by VISI of ISS-IMAP on the International Space Station. IEEJ Trans. Fundam. Mater., 131, 983988, https://doi.org/10.1541/ieejfms.131.983.

    • Search Google Scholar
    • Export Citation
  • Takahashi, H., P. P. Batista, Y. Sahai, and B. R. Clemesha, 1985: Atmospheric wave propagations in the mesopause region observed by the OH(8,3) band, NaD, O2A(8645Å) band and OI 5577 Å nightglow emissions. Planet. Space Sci., 33, 381384, https://doi.org/10.1016/0032-0633(85)90081-9.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. J., M. B. Bishop, and V. Taylor, 1995: All-sky measurements of short period waves imaged in the OI(557.7 nm), Na(589.2 nm) and near infrared OH and O2(0,1) nightglow emissions during the ALOHA-93 campaign. Geophys. Res. Lett., 22, 28332836, https://doi.org/10.1029/95GL02946.

    • Search Google Scholar
    • Export Citation
  • Vatsia, M. L., 1972: Atmospheric optical environment. U.S. Army Electronics Command Research and Development Tech. Rep. ECOM-7023, 123 pp., https://apps.dtic.mil/sti/citations/AD0750610.

  • von Savigny, C., I. C. McDade, K.-U. Eichmann, and J. P. Burrows, 2012: On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations. Atmos. Chem. Phys., 12, 88138828, https://doi.org/10.5194/acp-12-8813-2012.

    • Search Google Scholar
    • Export Citation
  • Wachter, P., C. Schmidt, S. Wüst, and M. Bittner, 2015: Spatial gravity wave characteristics obtained from multiple OH(3–1) airglow temperature time series. J. Atmos. Sol.-Terr. Phys., 135, 192201, https://doi.org/10.1016/j.jastp.2015.11.008.

    • Search Google Scholar
    • Export Citation
  • Wüst, S., and Coauthors, 2018: Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer. Atmos. Meas. Tech., 11, 29372947, https://doi.org/10.5194/amt-11-2937-2018.

    • Search Google Scholar
    • Export Citation
  • Yue, J., J. Tian, Q. Tian, K. Xu, and N. Xu, 2019: Development of soil moisture indices from differences in water absorption between shortwave-infrared bands. ISPRS J. Photogramm. Remote Sens., 154, 216230, https://doi.org/10.1016/j.isprsjprs.2019.06.012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 211 211 28
Full Text Views 50 50 3
PDF Downloads 56 56 2