A New Rotating Axes Method for Processing High-Resolution Horizontal Velocity Measurements on EM-APEX floats

Je-Yuan Hsu aInstitute of Oceanography, National Taiwan University, Taipei, Taiwan

Search for other papers by Je-Yuan Hsu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4229-2633
Restricted access

Abstract

A new rotating axes method (RAM) is developed to improve the vertical resolution of the horizontal current velocity measurements u at EM-APEX floats. Unlike the traditional harmonic fitting method (HFM), which yields u averaged in 50-s intervals, RAM decodes and interprets 1-Hz measurements of horizontal seawater velocity u˜, and averages u˜ in 12-s windows for removing wind waves with a typical peak frequency ∼ 0.12 Hz. Estimates of u from RAM agree with those from HFM but with a higher vertical resolution of ∼1.5 m, 4 times better than HFM. Note that extracting float signals due to seawater motion needs to assume slow-varying voltage offset ΔΦoffset. The typical variations of estimated ΔΦoffset do not affect the results of u significantly. Estimates of u are excluded when ΔΦoffset fluctuates strongly in time and scatter significantly. RAM is applied to float measurements taken near Mien-Hua Canyon, Taiwan. Composite vertical shear spectra Ψ computed using u from RAM exhibit a spectral slope of −1, as expected for the saturated internal waves in the vertical fine-scale range. The RAM provides EM-APEX float’s horizontal velocity measurements into fine vertical scales and will help improve our understanding of energy cascade from internal wave breaking and shear instability into turbulence mixing.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Je-Yuan Hsu, jyahsu@ntu.edu.tw

Abstract

A new rotating axes method (RAM) is developed to improve the vertical resolution of the horizontal current velocity measurements u at EM-APEX floats. Unlike the traditional harmonic fitting method (HFM), which yields u averaged in 50-s intervals, RAM decodes and interprets 1-Hz measurements of horizontal seawater velocity u˜, and averages u˜ in 12-s windows for removing wind waves with a typical peak frequency ∼ 0.12 Hz. Estimates of u from RAM agree with those from HFM but with a higher vertical resolution of ∼1.5 m, 4 times better than HFM. Note that extracting float signals due to seawater motion needs to assume slow-varying voltage offset ΔΦoffset. The typical variations of estimated ΔΦoffset do not affect the results of u significantly. Estimates of u are excluded when ΔΦoffset fluctuates strongly in time and scatter significantly. RAM is applied to float measurements taken near Mien-Hua Canyon, Taiwan. Composite vertical shear spectra Ψ computed using u from RAM exhibit a spectral slope of −1, as expected for the saturated internal waves in the vertical fine-scale range. The RAM provides EM-APEX float’s horizontal velocity measurements into fine vertical scales and will help improve our understanding of energy cascade from internal wave breaking and shear instability into turbulence mixing.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Je-Yuan Hsu, jyahsu@ntu.edu.tw
Save
  • Chang, H., and Coauthors, 2019: Generation and propagation of M2 internal tides modulated by the Kuroshio northeast of Taiwan. J. Geophys. Res. Oceans, 124, 27282749, https://doi.org/10.1029/2018JC014228.

    • Search Google Scholar
    • Export Citation
  • Chereskin, T. K., and A. J. Harding, 1993: Modeling the performance of an acoustic Doppler current profiler. J. Atmos. Oceanic Technol., 10, 4163, https://doi.org/10.1175/1520-0426(1993)010<0041:MTPOAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and R.-C. Lien, 2000: The wave–turbulence transition for stratified flows. J. Phys. Oceanogr., 30, 16691678, https://doi.org/10.1175/1520-0485(2000)030<1669:TWTTFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., and R. E. Good, 1986: Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere. J. Geophys. Res., 91, 27422748, https://doi.org/10.1029/JD091iD02p02742.

    • Search Google Scholar
    • Export Citation
  • Essink, S., E. Kunze, R.-C. Lien, R. Inoue, and S.-i. Ito, 2022: Near-inertial wave interactions and turbulence production in a Kuroshio anticyclonic eddy. J. Phys. Oceanogr., 52, 26872704, https://doi.org/10.1175/JPO-D-21-0278.1.

    • Search Google Scholar
    • Export Citation
  • Forryan, A., A. P. Martin, M. A. Srokosz, E. E. Popova, S. C. Painter, and A. H. H. Renner, 2013: A new observationally motivated Richardson number based mixing parametrization for oceanic mesoscale flow. J. Geophys. Res. Oceans, 118, 14051419, https://doi.org/10.1002/jgrc.20108.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., P. J. Hendricks, T. B. Sanford, T. R. Osborn, and A. J. Williams, 1981: A composite spectrum of vertical shear in the upper ocean. J. Phys. Oceanogr., 11, 12581271, https://doi.org/10.1175/1520-0485(1981)011<1258:ACSOVS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1975: Space‐time scales of internal waves: A progress report. J. Geophys. Res., 80, 291297, https://doi.org/10.1029/JC080i003p00291.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1979: Internal waves in the ocean. Annu. Rev. Fluid Mech., 11, 339369, https://doi.org/10.1146/annurev.fl.11.010179.002011.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., D. P. Winkel, and T. B. Sanford, 1993: Varieties of fully resolved spectra of vertical shear. J. Phys. Oceanogr., 23, 124141, https://doi.org/10.1175/1520-0485(1993)023<0124:VOFRSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., D. P. Winkel, T. B. Sanford, and H. Peters, 1996: Turbulence produced by internal waves in the oceanic thermocline at mid and low latitudes. Dyn. Atmos. Oceans, 24, 114, https://doi.org/10.1016/0377-0265(95)00406-8.

    • Search Google Scholar
    • Export Citation
  • Hsu, J.-Y., 2021: Observing surface wave directional spectra under Typhoon Megi 2010 using subsurface EM-APEX floats. J. Atmos. Oceanic Technol., 38, 19491966, https://doi.org/10.1175/JTECH-D-20-0210.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, J.-Y., R.-C. Lien, E. A. D’Asaro, and T. B. Sanford, 2017: Estimates of surface wind stress and drag coefficients in Typhoon Megi. J. Phys. Oceanogr., 47, 545565, https://doi.org/10.1175/JPO-D-16-0069.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, J.-Y., R.-C. Lien, E. A. D’Asaro, and T. B. Sanford, 2018: Estimates of surface waves using subsurface EM-APEX floats under Typhoon Fanapi 2010. J. Atmos. Oceanic Technol., 35, 10531075, https://doi.org/10.1175/JTECH-D-17-0121.1.

    • Search Google Scholar
    • Export Citation
  • Hu, K., and Q. Chen, 2011: Directional spectra of hurricane-generated waves in the Gulf of Mexico. Geophys. Res. Lett., 38, L19608, https://doi.org/10.1029/2011GL049145.

    • Search Google Scholar
    • Export Citation
  • Hughes, K. G., J. N. Moum, and E. L. Shroyer, 2020: Evolution of the velocity structure in the diurnal warm layer. J. Phys. Oceanogr., 50, 615631, https://doi.org/10.1175/JPO-D-19-0207.1.

    • Search Google Scholar
    • Export Citation
  • Klema, M. R., A. G. Pirzado, S. K. Venayagamoorthy, and T. K. Gates, 2020: Analysis of acoustic Doppler current profiler mean velocity measurements in shallow flows. Flow Meas. Instrum., 74, 101755, https://doi.org/10.1016/j.flowmeasinst.2020.101755.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., 2019: A unified model spectrum for anisotropic stratified and isotropic turbulence in the ocean and atmosphere. J. Phys. Oceanogr., 49, 385407, https://doi.org/10.1175/JPO-D-18-0092.1.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., A. J. Williams III, and M. G. Briscoe, 1990: Observations of shear and vertical stability from a neutrally buoyant float. J. Geophys. Res., 95, 18 12718 142, https://doi.org/10.1029/JC095iC10p18127.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, https://doi.org/10.1175/JPO2926.1.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., J. B. Mickett, and J. B. Girton, 2021: Destratification and restratification of the spring surface boundary layer in a subtropical front. J. Phys. Oceanogr., 51, 28612882, https://doi.org/10.1175/JPO-D-21-0003.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., and T. B. Sanford, 2019: Small-scale potential vorticity in the upper-ocean thermocline. J. Phys. Oceanogr., 49, 18451872, https://doi.org/10.1175/JPO-D-18-0052.1.

    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., T. B. Sanford, S. Jan, M.-H. Chang, and B. B. Ma, 2013: Internal tides on the East China Sea continental slope. J. Mar. Res., 71, 151185, https://doi.org/10.1357/002224013807343461.

    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., T. B. Sanford, J. A. Carlson, and J. H. Dunlap, 2016: Autonomous microstructure EM-APEX floats. Methods Oceanogr., 17, 282295, https://doi.org/10.1016/j.mio.2016.09.003.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., M. E. Stern, and H. Stommel, 1954: The electrical field induced by ocean currents and waves, with applications to the method of towed electrode. Pap. Phys. Oceanogr. Meteor., 13, 137, https://doi.org/10.1575/1912/1064.

    • Search Google Scholar
    • Export Citation
  • Mueller, D. S., J. D. Abad, C. M. García, J. W. Gartner, M. H. García, and K. A. Oberg, 2007: Errors in acoustic Doppler profiler velocity measurements caused by flow disturbance. J. Hydraul. Eng., 133, 14111420, https://doi.org/10.1061/(ASCE)0733-9429(2007)133:12(1411).

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Polzin, K., 1996: Statistics of the Richardson number: Mixing models and finestructure. J. Phys. Oceanogr., 26, 14091425, https://doi.org/10.1175/1520-0485(1996)026<1409:SOTRNM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, https://doi.org/10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233260, https://doi.org/10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rennie, C. D., 2008: Uncertainty of ADCP spatial velocity distributions. Proc. Sixth Int. Symp. on Ultrasonic Doppler Method for Fluid Mechanics and Fluid Engineering, Prague, Czech Republic, ISUD, 147–150.

  • Sanford, T. B., 1971: Motionally induced electric and magnetic fields in the sea. J. Geophys. Res., 76, 34763492, https://doi.org/10.1029/JC076i015p03476.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., R. G. Drever, and J. H. Dunlap, 1978: A velocity profiler based on the principles of geomagnetic induction. Deep-Sea Res., 25, 183210, https://doi.org/10.1016/0146-6291(78)90006-1.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., J. H. Dunlap, J. A. Carlson, D. C. Webb, and J. B. Girton, 2005: Autonomous velocity and density profiler: EM-APEX. Proc. IEEE/OES Eighth Working Conf. on Current Measurement Technology, Southampton, United Kingdom, IEEE, 152–156, https://doi.org/10.1109/CCM.2005.1506361.

  • Sanford, T. B., J. F. Price, and J. B. Girton, 2011: Upper-ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats. J. Phys. Oceanogr., 41, 10411056, https://doi.org/10.1175/2010JPO4313.1.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., J. K. Brewsterand, B. Jaimes, C. Gordon, K. Fennel, P. Furze, H. Fargher, and R. He, 2019: Physical and biochemical structure measured by APEX-EM floats. IEEE/OES 12th Current, Waves and Turbulence Measurement, San Diego, CA, IEEE, https://doi.org/10.1109/CWTM43797.2019.8955168.

  • Smyth, W. D., and J. N. Moum, 2013: Marginal instability and deep cycle turbulence in the eastern equatorial Pacific Ocean. Geophys. Res. Lett., 40, 61816185, https://doi.org/10.1002/2013GL058403.

    • Search Google Scholar
    • Export Citation
  • Strang, E. J., and H. J. S. Fernando, 2001: Vertical mixing and transports through a stratified shear layer. J. Phys. Oceanogr., 31, 20262048, https://doi.org/10.1175/1520-0485(2001)031<2026:VMATTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1999: On the breaking of internal waves in the ocean. J. Phys. Oceanogr., 29, 24332441, https://doi.org/10.1175/1520-0485(1999)029<2433:OTBOIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Todd, R. E., D. L. Rudnick, J. T. Sherman, W. B. Owens, and L. George, 2017: Absolute velocity estimates from autonomous underwater gliders equipped with Doppler current profilers. J. Atmos. Oceanic Technol., 34, 309333, https://doi.org/10.1175/JTECH-D-16-0156.1.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., and L. Gostiaux, 2010: A deep-ocean Kelvin-Helmholtz billow train. Geophys. Res. Lett., 37, L03605, https://doi.org/10.1029/2009GL041890.

    • Search Google Scholar
    • Export Citation
  • Weaver, J. T., 1965: Magnetic variations associated with ocean waves and swell. J. Geophys. Res., 70, 19211929, https://doi.org/10.1029/JZ070i008p01921.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1701 1468 37
Full Text Views 370 308 212
PDF Downloads 151 81 11