A Flexible, Multi-Instrument Optimal Estimation Retrieval for Wind Profiles

Joshua G. Gebauer aCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
bNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Joshua G. Gebauer in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3683-0829
and
Tyler M. Bell aCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
bNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Tyler M. Bell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Instruments such as Doppler lidars, radar wind profilers, and uncrewed aircraft systems could be used in observation networks to fill in the temporal and spatial gap that exists for low-level wind observations. These instruments, however, do not directly observe the wind and require a retrieval to be used to obtain wind estimates from their observations. Also, the depth and uncertainty of observations collected by these instruments vary depending on the environment that they are sampling. Optimal estimation is a variational retrieval method that combines information from a prior dataset and observations to retrieve an atmospheric state. This technique can be beneficial to use when observations have large uncertainties or provide insufficient information to obtain the atmospheric state by themselves. A new optimal estimation retrieval for obtaining wind profiles from typical lower atmospheric wind profiling instrumentation has been developed. This retrieval allows for more observations from wind profiling instrumentation to be used when retrieving wind profiles, increases the depth of retrieved profiles, and eliminates vertical data gaps. This retrieval can also be used to easily combine observations from different instruments or even with model data to create combined data wind retrievals that leverage the strengths of the different data sources to retrieve a wind profile that is superior to those obtained by the individual observations or data sources. It is envisioned that this retrieval will be continued to be developed and maintained as community software as lower atmospheric wind observing capabilities further develop and expand.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joshua G. Gebauer, joshua.gebauer@ou.edu

Abstract

Instruments such as Doppler lidars, radar wind profilers, and uncrewed aircraft systems could be used in observation networks to fill in the temporal and spatial gap that exists for low-level wind observations. These instruments, however, do not directly observe the wind and require a retrieval to be used to obtain wind estimates from their observations. Also, the depth and uncertainty of observations collected by these instruments vary depending on the environment that they are sampling. Optimal estimation is a variational retrieval method that combines information from a prior dataset and observations to retrieve an atmospheric state. This technique can be beneficial to use when observations have large uncertainties or provide insufficient information to obtain the atmospheric state by themselves. A new optimal estimation retrieval for obtaining wind profiles from typical lower atmospheric wind profiling instrumentation has been developed. This retrieval allows for more observations from wind profiling instrumentation to be used when retrieving wind profiles, increases the depth of retrieved profiles, and eliminates vertical data gaps. This retrieval can also be used to easily combine observations from different instruments or even with model data to create combined data wind retrievals that leverage the strengths of the different data sources to retrieve a wind profile that is superior to those obtained by the individual observations or data sources. It is envisioned that this retrieval will be continued to be developed and maintained as community software as lower atmospheric wind observing capabilities further develop and expand.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joshua G. Gebauer, joshua.gebauer@ou.edu
Save
  • Alcayaga, L., 2020: Filtering of pulsed lidar data using spatial information and a clustering algorithm. Atmos. Meas. Tech., 13, 62376254, https://doi.org/10.5194/amt-13-6237-2020.

    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., and F. Caracena, 1994: Lower-tropospheric precursors to nocturnal MCS development over the central United States. Wea. Forecasting, 9, 116135, https://doi.org/10.1175/1520-0434(1994)009<0116:LTPTNM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baidar, S., T. J. Wagner, D. D. Turner, and W. A. Brewer, 2023: Using optimal estimation to retrieve winds from velocity-azimuth display (VAD) scans by a Doppler lidar. Atmos. Meas. Tech., 16, 37153726, https://doi.org/10.5194/amt-16-3715-2023.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290, https://doi.org/10.1175/1520-0477-38.5.283.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7, 105113, https://doi.org/10.1175/1520-0450(1968)007%3C0105:TDOKPO%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2015: Impacts of increasing low-level shear on supercells during the early evening transition. Mon. Wea. Rev., 143, 19451969, https://doi.org/10.1175/MWR-D-14-00328.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., S. M. Cavallo, M. C. Coniglio, H. E. Brooks, and I. L. Jirak, 2017: Evaluation of multiple planetary boundary layer parameterization schemes in southeast U.S. cold season severe thunderstorm environments. Wea. Forecasting, 32, 18571884, https://doi.org/10.1175/WAF-D-16-0193.1.

    • Search Google Scholar
    • Export Citation
  • Dabberdt, W. F., and Coauthors, 2005: Multifunctional mesoscale observing networks. Bull. Amer. Meteor. Soc., 86, 961982, https://doi.org/10.1175/BAMS-86-7-961.

    • Search Google Scholar
    • Export Citation
  • Ecklund, W. L., D. A. Carter, and B. B. Balsley, 1988: A UHF wind profiler for the boundary layer: Brief description and initial results. J. Atmos. Oceanic Technol., 5, 432441, https://doi.org/10.1175/1520-0426(1988)005<0432:AUWPFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, J., N. Yussouf, D. D. Turner, T. A. Jones, and X. Wang, 2019: Impact of ground-based remote sensing boundary layer observations on short-term probabilistic forecasts of a tornadic supercell event. Wea. Forecasting, 34, 14531476, https://doi.org/10.1175/WAF-D-18-0200.1.

    • Search Google Scholar
    • Export Citation
  • Keeler, E., and K. Burk, 2001: Ballon-borne sounding system (SONDEWNPN). 2001-04-01 to 2021-12-31, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1). ARM Data Center, accessed 30 August 2022, https://doi.org/10.5439/1595321.

  • Lerner, J. A., E. Weisz, and G. Kirchengast, 2002: Temperature and humidity retrieval from simulated Infrared Atmospheric Sounding Interferometer (IASI) measurements. J. Geophys. Res., 107, 4189, https://doi.org/10.1029/2001JD900254.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., S. Crewell, and C. Simmer, 2004: An integrated approach toward retrieving physically consistent profiles of temperature, humidity, and cloud liquid water. J. Appl. Meteor., 43, 12951307, https://doi.org/10.1175/1520-0450(2004)043<1295:AIATRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maahn, M., D. D. Turner, U. Löhnert, D. J. Posselt, K. Ebell, G. G. Mace, and J. M. Comstock, 2020: Optimal estimation retrievals and their uncertainties: What every atmospheric scientist should know. Bull. Amer. Meteor. Soc., 101, E1512E1523, https://doi.org/10.1175/BAMS-D-19-0027.1.

    • Search Google Scholar
    • Export Citation
  • Morse, C. S., R. K. Goodrich, and L. B. Cornman, 2002: The NIMA method for improved moment estimation from Doppler spectra. J. Atmos. Oceanic Technol., 19, 274295, https://doi.org/10.1175/1520-0426-19.3.274.

    • Search Google Scholar
    • Export Citation
  • Muradyan, R., and B. Ermold, 2019a: Radar wind profiler (915RWPWINDMOMHI). 2021-02-01 to 2021-11-30, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1). ARM Data Center, accessed 25 May 2022, https://doi.org/10.5439/1573768.

  • Muradyan, R., and B. Ermold, 2019b: Radar wind profiler (915RWPWINDMOMLO). 2021-02-01 to 2021-11-30, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1). ARM Data Center, accessed 25 May 2022, https://doi.org/10.5439/1573768.

  • National Research Council, 2009: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. National Academies Press, 250 pp.

  • Neumann, P. P., and M. Bartholmai, 2015: Real-time wind estimation on a micro unmanned aerial vehicle using its inertial measurement unit. Sens. Actuators, 235A, 300310, https://doi.org/10.1016/j.sna.2015.09.036.

    • Search Google Scholar
    • Export Citation
  • Newsom, R., and Y. Shi, 2010: Doppler lidar (DLPPI). 2021-02-01 to 2021-11-30, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1). ARM Data Center, accessed 25 May 2022, https://doi.org/10.5439/1025186.

  • Newsom, R. K., W. A. Brewer, J. M. Wilczak, D. E. Wolfe, S. P. Oncley, and J. K. Lundquist, 2017: Validating precision estimates in horizontal wind measurements from a Doppler lidar. Atmos. Meas. Tech., 10, 12291240, https://doi.org/10.5194/amt-10-1229-2017.

    • Search Google Scholar
    • Export Citation
  • Palomaki, R. T., N. T. Rose, M. van den Bossche, T. J. Sherman, and S. F. J. De Wekker, 2017: Wind estimation in the lower atmosphere using multirotor aircraft. J. Atmos. Oceanic Technol., 34, 11831191, https://doi.org/10.1175/JTECH-D-16-0177.1.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and Coauthors, 2020: Assessing systematic impacts of PBL schemes on storm evolution in the NOAA Warn-on-Forecast system. Mon. Wea. Rev., 148, 25672590, https://doi.org/10.1175/MWR-D-19-0389.1.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific Publishing Company, 238 pp.

  • Segales, A. R., B. R. Greene, T. M. Bell, W. Doyle, J. J. Martin, E. A. Pillar-Little, and P. B. Chilson, 2020: The CopterSonde: An insight into the development of a smart unmanned aircraft system for atmospheric boundary layer research. Atmos. Meas. Tech., 13, 28332848, https://doi.org/10.5194/amt-13-2833-2020.

    • Search Google Scholar
    • Export Citation
  • Stalker, J., J. Lasley, G. Frederick, R. McPherson, P. Campbell, B. Philips, and B. Pasken, 2013: A nationwide network of networks. Bull. Amer. Meteor. Soc., 94, 16021606, https://doi.org/10.1175/1520-0477-94.10.1602.

    • Search Google Scholar
    • Export Citation
  • Steinheuer, J., C. Detring, F. Beyrich, U. Löhnert, P. Friederichs, and S. Fiedler, 2022: A new scanning scheme and flexible retrieval for mean winds and gusts from Doppler lidar measurements. Atmos. Meas. Tech., 15, 32433260, https://doi.org/10.5194/amt-15-3243-2022.

    • Search Google Scholar
    • Export Citation
  • Strauch, R. G., D. A. Merritt, K. P. Moran, K. B. Earnshaw, and D. Van De Kamp, 1984: The Colorado wind-profiling network. J. Atmos. Oceanic Technol., 1, 3749, https://doi.org/10.1175/1520-0426(1984)001<0037:TCWPN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and U. Löhnert, 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor. Climatol., 53, 752771, https://doi.org/10.1175/JAMC-D-13-0126.1.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and W. G. Blumberg, 2019: Improvements to the AERIoe thermodynamic profile retrieval algorithm. J. Sel. Top. Appl. Earth Obs. Remote Sens., 12, 13391354, https://doi.org/10.1109/JSTARS.2018.2874968.

    • Search Google Scholar
    • Export Citation
  • Wagner, T. J., P. M. Klein, and D. D. Turner, 2019: A new generation of ground-based mobile platforms for active and passive profiling of the boundary layer. Bull. Amer. Meteor. Soc., 100, 137153, https://doi.org/10.1175/BAMS-D-17-0165.1.

    • Search Google Scholar
    • Export Citation
  • Wunch, D., and Coauthors, 2011: The total carbon column observing network. Philos. Trans. Roy. Soc., A369, 20872112, https://doi.org/10.1098/rsta.2010.0240.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 446 446 47
Full Text Views 144 144 30
PDF Downloads 179 179 36