Impact of Atmospheric River Reconnaissance Dropsonde Data on the Assimilation of Satellite Radiance Data in GFS

Minghua Zheng aCenter for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California

Search for other papers by Minghua Zheng in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5352-0745
,
Luca Delle Monache aCenter for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California

Search for other papers by Luca Delle Monache in
Current site
Google Scholar
PubMed
Close
,
Xingren Wu bAxiom Consultants, Inc., Rockville at NOAA/NCEP/EMC, College Park, Maryland

Search for other papers by Xingren Wu in
Current site
Google Scholar
PubMed
Close
,
Brian Kawzenuk aCenter for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California

Search for other papers by Brian Kawzenuk in
Current site
Google Scholar
PubMed
Close
,
F. Martin Ralph aCenter for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California

Search for other papers by F. Martin Ralph in
Current site
Google Scholar
PubMed
Close
,
Yanqiu Zhu cNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Yanqiu Zhu in
Current site
Google Scholar
PubMed
Close
,
Ryan Torn dUniversity at Albany, State University of New York, Albany, New York

Search for other papers by Ryan Torn in
Current site
Google Scholar
PubMed
Close
,
Vijay S. Tallapragada eNOAA/NCEP/EMC, College Park, Maryland

Search for other papers by Vijay S. Tallapragada in
Current site
Google Scholar
PubMed
Close
,
Zhenhai Zhang aCenter for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California

Search for other papers by Zhenhai Zhang in
Current site
Google Scholar
PubMed
Close
,
Keqin Wu fThe Northern Gulf Institute at NOAA/NCEP/EMC, College Park, Maryland

Search for other papers by Keqin Wu in
Current site
Google Scholar
PubMed
Close
, and
Jia Wang aCenter for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California

Search for other papers by Jia Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Satellites provide the largest dataset for monitoring the earth system and constraining analyses in numerical weather prediction models. A significant challenge for utilizing satellite radiances is the accurate estimation of their biases. High-accuracy nonradiance data are commonly employed to anchor radiance bias corrections. However, aside from the impacts of radio occultation data in the stratosphere, the influence of other types of “anchor” observation data on radiance assimilation remains unclear. This study provides an assessment of impacts of dropsonde data collected during the Atmospheric River (AR) Reconnaissance program, which samples ARs over the northeast Pacific, on the radiance assimilation using the Global Forecast System (GFS) and Global Data Assimilation System at the National Centers for Environmental Prediction. The assimilation of this dropsonde dataset has proven crucial for providing enhanced anchoring for bias corrections and improving the model background, leading to an increase of ∼5%–10% in the number of assimilated microwave radiance in the lower troposphere/midtroposphere over the northeast Pacific and North America. The impact on tropospheric infrared radiance is not only small but also beneficial. Impacts of dropsondes on the use of stratospheric channels are minimal due to the absence of dropsonde observations at certain altitudes, such as aircraft flight levels (e.g., 150 hPa). Results in this study underscore the usefulness of dropsondes, along with other conventional data, in optimizing the assimilation of satellite radiance. This study reinforces the importance of a diverse observing network for accurate weather forecasting and highlights the specific benefits derived from integrating dropsonde data into radiance assimilation processes.

Significance Statement

This study aims to evaluate the impact of aircraft reconnaissance dropsondes on the assimilation of satellite radiance data, utilizing observations from the 2020 Atmospheric River Reconnaissance program. The key findings reveal a substantial enhancement in the model first guess and improved estimates of radiance biases. Notably, there is a significant 5%–10% increase in microwave radiance observations over the northeastern Pacific and North America, with positive yet modest effects observed in tropospheric infrared radiance. These findings underscore the crucial role of atmospheric river reconnaissance dropsondes as anchor data, enhancing the assimilation of radiance observations. In essence, the inclusion of these dropsondes in routine networks is particularly valuable for optimizing data assimilation in regions with sparse observational data.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 18 September 2024 to update the Acknowledgments section with new information that was not present when originally published.

Corresponding author: Minghua Zheng, mzheng@ucsd.edu

Abstract

Satellites provide the largest dataset for monitoring the earth system and constraining analyses in numerical weather prediction models. A significant challenge for utilizing satellite radiances is the accurate estimation of their biases. High-accuracy nonradiance data are commonly employed to anchor radiance bias corrections. However, aside from the impacts of radio occultation data in the stratosphere, the influence of other types of “anchor” observation data on radiance assimilation remains unclear. This study provides an assessment of impacts of dropsonde data collected during the Atmospheric River (AR) Reconnaissance program, which samples ARs over the northeast Pacific, on the radiance assimilation using the Global Forecast System (GFS) and Global Data Assimilation System at the National Centers for Environmental Prediction. The assimilation of this dropsonde dataset has proven crucial for providing enhanced anchoring for bias corrections and improving the model background, leading to an increase of ∼5%–10% in the number of assimilated microwave radiance in the lower troposphere/midtroposphere over the northeast Pacific and North America. The impact on tropospheric infrared radiance is not only small but also beneficial. Impacts of dropsondes on the use of stratospheric channels are minimal due to the absence of dropsonde observations at certain altitudes, such as aircraft flight levels (e.g., 150 hPa). Results in this study underscore the usefulness of dropsondes, along with other conventional data, in optimizing the assimilation of satellite radiance. This study reinforces the importance of a diverse observing network for accurate weather forecasting and highlights the specific benefits derived from integrating dropsonde data into radiance assimilation processes.

Significance Statement

This study aims to evaluate the impact of aircraft reconnaissance dropsondes on the assimilation of satellite radiance data, utilizing observations from the 2020 Atmospheric River Reconnaissance program. The key findings reveal a substantial enhancement in the model first guess and improved estimates of radiance biases. Notably, there is a significant 5%–10% increase in microwave radiance observations over the northeastern Pacific and North America, with positive yet modest effects observed in tropospheric infrared radiance. These findings underscore the crucial role of atmospheric river reconnaissance dropsondes as anchor data, enhancing the assimilation of radiance observations. In essence, the inclusion of these dropsondes in routine networks is particularly valuable for optimizing data assimilation in regions with sparse observational data.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 18 September 2024 to update the Acknowledgments section with new information that was not present when originally published.

Corresponding author: Minghua Zheng, mzheng@ucsd.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.3491 MB)
Save
  • Aberson, S. D., 2010: 10 years of hurricane synoptic surveillance (1997–2006). Mon. Wea. Rev., 138, 15361549, https://doi.org/10.1175/2009MWR3090.1.

    • Search Google Scholar
    • Export Citation
  • Andersson, E., and Coauthors, 2005: Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system. Bull. Amer. Meteor. Soc., 86, 387402, https://doi.org/10.1175/BAMS-86-3-387.

    • Search Google Scholar
    • Export Citation
  • Auligné, T., A. P. McNally, and D. P. Dee, 2007: Adaptive bias correction for satellite data in a numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 133, 631642, https://doi.org/10.1002/qj.56.

    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253264, https://doi.org/10.1109/TGRS.2002.808356.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., P. Lopez, D. Salmond, A. Benedetti, S. Saarinen, and M. Bonazzola, 2006: Implementation of 1D+4D‐Var assimilation of precipitation‐affected microwave radiances at ECMWF. II: 4D‐Var. Quart. J. Roy. Meteor. Soc., 132, 23072332, https://doi.org/10.1256/qj.06.07.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., G. Radnóti, S. Healy, and C. Cardinali, 2014: GNSS radio occultation constellation observing system experiments. Mon. Wea. Rev., 142, 555572, https://doi.org/10.1175/MWR-D-13-00130.1.

    • Search Google Scholar
    • Export Citation
  • Bhargava, K., E. Kalnay, J. A. Carton, and F. Yang, 2018: Estimation of systematic errors in the GFS using analysis increments. J. Geophys. Res. Atmos., 123, 16261637, https://doi.org/10.1002/2017JD027423.

    • Search Google Scholar
    • Export Citation
  • Bormann, N., A. Fouilloux, and W. Bell, 2013: Evaluation and assimilation of ATMS data in the ECMWF system. J. Geophys. Res. Atmos., 118, 12 97012 980, https://doi.org/10.1002/2013JD020325.

    • Search Google Scholar
    • Export Citation
  • Boukabara, S.-A., F. Weng, and Q. Liu, 2007: Passive microwave remote sensing of extreme weather events using NOAA-18 AMSUA and MHS. IEEE Trans. Geosci. Remote Sens., 45, 22282246, https://doi.org/10.1109/TGRS.2007.898263.

    • Search Google Scholar
    • Export Citation
  • Caplan, P., J. Derber, W. Gemmill, S.-Y. Hong, H.-L. Pan, and D. Parrish, 1997: Changes to the 1995 NCEP operational medium-range forecast model analysis–forecast system. Wea. Forecasting, 12, 581594, https://doi.org/10.1175/1520-0434(1997)012<0581:CTTNOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chandramouli, K., X. Wang, A. Johnson, and J. Otkin, 2022: Online nonlinear bias correction in ensemble Kalman filter to assimilate GOES‐R all‐sky radiances for the analysis and prediction of rapidly developing supercells. J. Adv. Model. Earth Syst., 14, e2021MS002711, https://doi.org/10.1029/2021MS002711.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., and Coauthors, 2019: Advancements in hurricane prediction with NOAA’s next-generation forecast system. Geophys. Res. Lett., 46, 44954501, https://doi.org/10.1029/2019GL082410.

    • Search Google Scholar
    • Export Citation
  • Collard, A. D., 2007: Selection of IASI channels for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 133, 19771991, https://doi.org/10.1002/qj.178.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., and Coauthors, 1993: Variational assimilation at ECMWF. ECMWF Tech. Memo. 194, 85 pp., https://doi.org/10.21957/j7h4sk4ha.

  • Cucurull, L., R. A. Anthes, and L.-L. Tsao, 2014: Radio occultation observations as anchor observations in numerical weather prediction models and associated reduction of bias corrections in microwave and infrared satellite observations. J. Atmos. Oceanic Technol., 31, 2032, https://doi.org/10.1175/JTECH-D-13-00059.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 2004: Variational bias correction of radiance data in the ECMWF system. Proc. of the ECMWF Workshop on Assimilation of High Spectral Resolution Sounders in NWP, Reading, United Kingdom, ECMWF, 97–112, https://www.ecmwf.int/sites/default/files/elibrary/2004/8930-variational-bias-correction-radiance-data-ecmwf-system.pdf.

  • DeHaan, L. L., and Coauthors, 2023: Impacts of dropsonde observations on forecasts of atmospheric rivers and associated precipitation in the NCEP GFS and ECMWF IFS models. Wea. Forecasting, 38, 23972413, https://doi.org/10.1175/WAF-D-23-0025.1.

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 22872299, https://doi.org/10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • English, J. M., A. C. Kren, and T. R. Peevey, 2018: Improving winter storm forecasts with Observing System Simulation Experiments (OSSEs). Part 2: Evaluating a satellite gap with idealized and targeted dropsondes. Earth Space Sci., 5, 176196, https://doi.org/10.1002/2017EA000350.

    • Search Google Scholar
    • Export Citation
  • Eresmaa, R., J. Letertre‐Danczak, C. Lupu, N. Bormann, and A. P. McNally, 2017: The assimilation of cross‐track infrared sounder radiances at ECMWF. Quart. J. Roy. Meteor. Soc., 143, 31773188, https://doi.org/10.1002/qj.3171.

    • Search Google Scholar
    • Export Citation
  • Eyre, J. R., 2016: Observation bias correction schemes in data assimilation systems: A theoretical study of some of their properties. Quart. J. Roy. Meteor. Soc., 142, 22842291, https://doi.org/10.1002/qj.2819.

    • Search Google Scholar
    • Export Citation
  • Eyre, J. R., S. J. English, and M. Forsythe, 2020: Assimilation of satellite data in numerical weather prediction. Part I: The early years. Quart. J. Roy. Meteor. Soc., 146, 4968, https://doi.org/10.1002/qj.3654.

    • Search Google Scholar
    • Export Citation
  • Eyre, J. R., W. Bell, J. Cotton, S. J. English, M. Forsythe, S. B. Healy, and E. G. Pavelin, 2022: Assimilation of satellite data in numerical weather prediction. Part II: Recent years. Quart. J. Roy. Meteor. Soc., 148, 521556, https://doi.org/10.1002/qj.4228.

    • Search Google Scholar
    • Export Citation
  • Gambacorta, A., and C. D. Barnet, 2013: Methodology and information content of the NOAA NESDIS operational channel selection for the Cross-track Infrared Sounder (CrIS). IEEE Trans. Geosci. Remote Sens., 51, 32073216, https://doi.org/10.1109/TGRS.2012.2220369.

    • Search Google Scholar
    • Export Citation
  • Geer, A. J., and P. Bauer, 2011: Observation errors in all‐sky data assimilation. Quart. J. Roy. Meteor. Soc., 137, 20242037, https://doi.org/10.1002/qj.830.

    • Search Google Scholar
    • Export Citation
  • Gershunov, A., T. Shulgina, F. M. Ralph, D. A. Lavers, and J. J. Rutz, 2017: Assessing the climate‐scale variability of atmospheric rivers affecting western North America. Geophys. Res. Lett., 44, 79007908, https://doi.org/10.1002/2017GL074175.

    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Search Google Scholar
    • Export Citation
  • Haase, J. S., M. J. Murphy, B. Cao, F. M. Ralph, M. Zheng, and L. Delle Monache, 2021: Multi‐GNSS airborne radio occultation observations as a complement to dropsondes in atmospheric river reconnaissance. J. Geophys. Res. Atmos., 126, e2021JD034865, https://doi.org/10.1029/2021JD034865.

    • Search Google Scholar
    • Export Citation
  • Han, Y., and Coauthors, 2013: Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality. J. Geophys. Res. Atmos., 118, 12 73412 748, https://doi.org/10.1002/2013JD020344.

    • Search Google Scholar
    • Export Citation
  • Harris, B. A., and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Quart. J. Roy. Meteor. Soc., 127, 14531468, https://doi.org/10.1002/qj.49712757418.

    • Search Google Scholar
    • Export Citation
  • Healy, S. B., 2008: Assimilation of GPS radio occultation measurements at ECMWF. Proc. of the GRAS SAF Workshop on Applications of GPSRO Measurements, Reading, United Kingdom, ECMWF, 99–109, https://www.ecmwf.int/sites/default/files/elibrary/2008/9809-assimilation-gps-radio-occultation-measurements-ecmwf.pdf.

  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hilton, F., N. C. Atkinson, S. J. English, and J. R. Eyre, 2009: Assimilation of IASI at the Met Office and assessment of its impact through observing system experiments. Quart. J. Roy. Meteor. Soc., 135, 495505, https://doi.org/10.1002/qj.379.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and K. Ide, 2015: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Wea. Rev., 143, 452470, https://doi.org/10.1175/MWR-D-13-00350.1.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP global data assimilation system. Wea. Forecasting, 24, 16911705, https://doi.org/10.1175/2009WAF2222201.1.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., and N. L. Baker, 2004: Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus, 56A, 189201, https://doi.org/10.3402/tellusa.v56i3.14413.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., M. J. Rodwell, D. S. Richardson, F. M. Ralph, J. D. Doyle, C. A. Reynolds, V. Tallapragada, and F. Pappenberger, 2018: The gauging and modeling of rivers in the sky. Geophys. Res. Lett., 45, 78287834, https://doi.org/10.1029/2018GL079019.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., R. D. Torn, C. Davis, D. S. Richardson, F. M. Ralph, and F. Pappenberger, 2023: Forecast evaluation of the North Pacific jet stream using AR Recon dropwindsondes. Quart. J. Roy. Meteor. Soc., 149, 30443063, https://doi.org/10.1002/qj.4545.

    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., F. D. Marks, and C. Walther, 2003: Airborne Doppler radar data analysis workshop. Bull. Amer. Meteor. Soc., 84, 10631075, https://doi.org/10.1175/BAMS-84-8-1063.

    • Search Google Scholar
    • Export Citation
  • Li, X., X. Zou, and M. Zeng, 2019: An alternative bias correction scheme for CrIS data assimilation in a regional model. Mon. Wea. Rev., 147, 809839, https://doi.org/10.1175/MWR-D-18-0044.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., C. S. Schwartz, C. Snyder, and S.-Y. Ha, 2012: Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area ensemble Kalman filter. Mon. Wea. Rev., 140, 40174034, https://doi.org/10.1175/MWR-D-12-00083.1.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., X. Wu, V. Tallapragada, and F. M. Ralph, 2023a: The impact of dropsonde data on the performance of the NCEP global forecast system during the 2020 atmospheric rivers observing campaign. Part I: Precipitation. Wea. Forecasting, 38, 1745, https://doi.org/10.1175/WAF-D-22-0036.1.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., X. Wu, V. Tallapragada, and F. M. Ralph, 2023b: The impact of dropsonde data on the performance of the NCEP global forecast system during the 2020 atmospheric rivers observing campaign. Part II: Dynamic variables and humidity. Wea. Forecasting, 38, 721752, https://doi.org/10.1175/WAF-D-22-0072.1.

    • Search Google Scholar
    • Export Citation
  • Maier, M. W., and Coauthors, 2021: Architecting the future of weather satellites. Bull. Amer. Meteor. Soc., 102, E589E610, https://doi.org/10.1175/BAMS-D-19-0258.1.

    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., 2016: A review of targeted observations. Bull. Amer. Meteor. Soc., 97, 22872303, https://doi.org/10.1175/BAMS-D-14-00259.1.

    • Search Google Scholar
    • Export Citation
  • Mallick, S., and T. A. Jones, 2022: Impact of adaptively thinned GOES-16 all-sky radiances in an ensemble Kalman filter based WoFS. Atmos. Res., 277, 106304, https://doi.org/10.1016/j.atmosres.2022.106304.

    • Search Google Scholar
    • Export Citation
  • Mcnally, A. P., P. D. Watts, J. A. Smith, R. Engelen, G. A. Kelly, J. N. Thépaut, and M. Matricardi, 2006: The assimilation of AIRS radiance data at ECMWF. Quart. J. Roy. Meteor. Soc., 132, 935957, https://doi.org/10.1256/qj.04.171.

    • Search Google Scholar
    • Export Citation
  • Ota, Y., J. C. Derber, E. Kalnay, and T. Miyoshi, 2013: Ensemble-based observation impact estimates using the NCEP GFS. Tellus, 65A, 20038, https://doi.org/10.3402/tellusa.v65i0.20038.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., G. L. Stephens, and M. Miller, 2008: CloudSat: Adding a new dimension to a classical view of extratropical cyclones. Bull. Amer. Meteor. Soc., 89, 599610, https://doi.org/10.1175/BAMS-89-5-599.

    • Search Google Scholar
    • Export Citation
  • Pu, Z., X. Li, C. S. Velden, S. D. Aberson, and W. T. Liu, 2008: The impact of aircraft dropsonde and satellite wind data on numerical simulations of two landfalling tropical storms during the tropical cloud systems and processes experiment. Wea. Forecasting, 23, 6279, https://doi.org/10.1175/2007WAF2007006.1.

    • Search Google Scholar
    • Export Citation
  • Radnoti, G., P. Bauer, A. McNally, and A. Horanyi, 2012: ECMWF study to quantify the interaction between terrestrial and space-based observing systems on numerical weather prediction skill. ECMWF Tech. Memo. 679, 97 pp., www.ecmwf.int/en/elibrary/11814-ecmwf-study-quantify-interaction-between-terrestrial-and-space-based-observing.

  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and R. Rotunno, 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910, https://doi.org/10.1175/MWR2896.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2020: West coast forecast challenges and development of atmospheric river reconnaissance. Bull. Amer. Meteor. Soc., 101, E1357E1377, https://doi.org/10.1175/BAMS-D-19-0183.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., and Coauthors, 2023: Impacts of northeastern Pacific buoy surface pressure observations. Mon. Wea. Rev., 151, 211226, https://doi.org/10.1175/MWR-D-22-0124.1.

    • Search Google Scholar
    • Export Citation
  • Rosenkranz, P. W., 2001: Retrieval of temperature and moisture profiles from AMSU-A and AMSU-B measurements. IEEE Trans. Geosci. Remote Sens., 39, 24292435, https://doi.org/10.1109/36.964979.

    • Search Google Scholar
    • Export Citation
  • Stone, R. E., C. A. Reynolds, J. D. Doyle, R. H. Langland, N. L. Baker, D. A. Lavers, and F. M. Ralph, 2020: Atmospheric river reconnaissance observation impact in the Navy global forecast system. Mon. Wea. Rev., 148, 763782, https://doi.org/10.1175/MWR-D-19-0101.1.

    • Search Google Scholar
    • Export Citation
  • Stuart, A., K. Ord, and S. Arnold, 2010: Kendall’s Advanced Theory of Statistics. 6th ed., Vol. 2A, Wiley, 912 pp.

  • Sun, W., Z. Liu, C. A. Davis, F. M. Ralph, L. Delle Monache, and M. Zheng, 2022: Impacts of dropsonde and satellite observations on the forecasts of two atmospheric-river-related heavy rainfall events. Atmos. Res., 278, 106327, https://doi.org/10.1016/j.atmosres.2022.106327.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2014: The impact of targeted dropwindsonde observations on tropical cyclone intensity forecasts of four weak systems during PREDICT. Mon. Wea. Rev., 142, 28602878, https://doi.org/10.1175/MWR-D-13-00284.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and T. Lei, 2014: GSI-based four-dimensional ensemble–variational (4DEnsVar) data assimilation: Formulation and single-resolution experiments with real data for NCEP global forecast system. Mon. Wea. Rev., 142, 33033325, https://doi.org/10.1175/MWR-D-13-00303.1.

    • Search Google Scholar
    • Export Citation
  • Weissmann, M., and Coauthors, 2011: The influence of assimilating dropsonde data on typhoon track and midlatitude forecasts. Mon. Wea. Rev., 139, 908920, https://doi.org/10.1175/2010MWR3377.1.

    • Search Google Scholar
    • Export Citation
  • Weng, F., 2007: Advances in radiative transfer modeling in support of satellite data assimilation. J. Atmos. Sci., 64, 37993807, https://doi.org/10.1175/2007JAS2112.1.

    • Search Google Scholar
    • Export Citation
  • Yang, F., and V. Tallapragada, 2018: Evaluation of retrospective and real-time NGGPS FV3GFS experiments for Q3FY18 beta implementation. 25th Conf. on Numerical Weather Prediction, Denver, CO, Amer. Meteor. Soc., 5B.3, https://ams.confex.com/ams/29WAF25NWP/webprogram/Paper345231.html.

  • Zhang, F., M. Minamide, R. G. Nystrom, X. Chen, S.-J. Lin, and L. M. Harris, 2019: Improving Harvey forecasts with next-generation weather satellites: Advanced hurricane analysis and prediction with assimilation of GOES-R all-sky radiances. Bull. Amer. Meteor. Soc., 100, 12171222, https://doi.org/10.1175/BAMS-D-18-0149.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Q. Xiao, and P. J. Fitzpatrick, 2007: The impact of multisatellite data on the initialization and simulation of Hurricane Lili’s (2002) rapid weakening phase. Mon. Wea. Rev., 135, 526548, https://doi.org/10.1175/MWR3287.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., F. M. Ralph, and M. Zheng, 2019: The relationship between extratropical cyclone strength and atmospheric river intensity and position. Geophys. Res. Lett., 46, 18141823, https://doi.org/10.1029/2018GL079071.

    • Search Google Scholar
    • Export Citation
  • Zheng, M., and Coauthors, 2021a: Data gaps within atmospheric rivers over the northeastern Pacific. Bull. Amer. Meteor. Soc., 102, E492E524, https://doi.org/10.1175/BAMS-D-19-0287.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, M., and Coauthors, 2021b: Improved forecast skill through the assimilation of dropsonde observations from the atmospheric river reconnaissance program. J. Geophys. Res. Atmos., 126, e2021JD034967, https://doi.org/10.1029/2021JD034967.

    • Search Google Scholar
    • Export Citation
  • Zheng, M., and Coauthors, 2022: Data from: Impact of atmospheric river reconnaissance dropsonde data as anchor observations on satellite data assimilation in GFS. UC San Diego Library Digital Collections, accessed 30 August 2024, https://doi.org/10.6075/J0D21XSQ.

  • Zheng, M., and Coauthors, 2024: An assessment of dropsonde sampling strategies for atmospheric river reconnaissance. Mon. Wea. Rev., 152, 811835, https://doi.org/10.1175/MWR-D-23-0111.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1994: Atmospheric rivers and bombs. Geophys. Res. Lett., 21, 19992002, https://doi.org/10.1029/94GL01710.

  • Zhu, Y., J. Derber, A. Collard, D. Dee, R. Treadon, G. Gayno, and J. A. Jung, 2014a: Enhanced radiance bias correction in the National Centers for Environmental Prediction’s gridpoint statistical interpolation data assimilation system. Quart. J. Roy. Meteor. Soc., 140, 14791492, https://doi.org/10.1002/qj.2233.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Coauthors, 2014b: Variational bias correction in the NCEP’s data assimilation system. 19th Int. TOVS Study Conf., Jeju Island, South Korea, ITWG, 13 pp., http://cimss.ssec.wisc.edu/itwg/itsc/itsc19/program/papers/10_02_zhu.pdf.

  • Zhu, Y., and Coauthors, 2016: All-sky microwave radiance assimilation in NCEP’s GSI analysis system. Mon. Wea. Rev., 144, 47094735, https://doi.org/10.1175/MWR-D-15-0445.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 499 499 499
Full Text Views 89 89 89
PDF Downloads 91 91 91