Unlocking a Global Ocean Mixing Dataset: Toward Standardization of Seismic-Derived Ocean Mixing Rates

Jingxuan Wei Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Jingxuan Wei in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7919-0040
,
Zeyu Zhao School of Earth and Space Sciences, Peking University, Beijing, China

Search for other papers by Zeyu Zhao in
Current site
Google Scholar
PubMed
Close
,
Kathryn L. Gunn School of Ocean and Earth Science, University of Southampton, Southampton, United Kingdom

Search for other papers by Kathryn L. Gunn in
Current site
Google Scholar
PubMed
Close
,
Sean P. S. Gulick Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas
Department of Earth and Planetary Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Sean P. S. Gulick in
Current site
Google Scholar
PubMed
Close
,
Donna J. Shillington School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona

Search for other papers by Donna J. Shillington in
Current site
Google Scholar
PubMed
Close
, and
Christopher M. Lowery Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Christopher M. Lowery in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Turbulent mixing is vital for water transformation in the ocean and sustains the global thermohaline circulation. Despite decades of global observations using different platforms, our understanding of ocean turbulence is still limited. More observations are needed to better characterize the spatiotemporal distribution of mixing to reduce uncertainties in climate models. Marine seismic reflection surveys are an untapped data resource for high-resolution ocean turbulence observation. Turbulent mixing can be extracted from seismic data through horizontal internal wave slope spectra. However, to date, a standardized approach to prepare seismic data for this spectral analysis is still lacking, leading to insufficient consideration of the impact of noise on the resulting diffusivities. To address these issues, we perform a full-wavefield synthetic modeling and processing to reveal noise-induced overestimation of diffusivities. We further propose a widely applicable workflow and apply it to three field seismic surveys with increasing noise levels conducted in regions of different turbulence environments: ocean ridges, open ocean interior, and continental slope. The derived diffusivities are benchmarked against direct measurements around the region to show the fidelity of this seismic method. The extended observation records by seismic data across the Kauai Channel and away from the Mid-Atlantic Ridges reveal the importance of topography in modifying the propagation of internal tides and the distribution of turbulent mixing in both near and far fields. Our proposed workflow marks a key advancement toward standardization of seismic-derived ocean mixing rates and holds the potential to unlock massive marine seismic reflection datasets worldwide for ocean mixing characterization.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jingxuan Wei, jingxuan.wei@austin.utexas.edu

Abstract

Turbulent mixing is vital for water transformation in the ocean and sustains the global thermohaline circulation. Despite decades of global observations using different platforms, our understanding of ocean turbulence is still limited. More observations are needed to better characterize the spatiotemporal distribution of mixing to reduce uncertainties in climate models. Marine seismic reflection surveys are an untapped data resource for high-resolution ocean turbulence observation. Turbulent mixing can be extracted from seismic data through horizontal internal wave slope spectra. However, to date, a standardized approach to prepare seismic data for this spectral analysis is still lacking, leading to insufficient consideration of the impact of noise on the resulting diffusivities. To address these issues, we perform a full-wavefield synthetic modeling and processing to reveal noise-induced overestimation of diffusivities. We further propose a widely applicable workflow and apply it to three field seismic surveys with increasing noise levels conducted in regions of different turbulence environments: ocean ridges, open ocean interior, and continental slope. The derived diffusivities are benchmarked against direct measurements around the region to show the fidelity of this seismic method. The extended observation records by seismic data across the Kauai Channel and away from the Mid-Atlantic Ridges reveal the importance of topography in modifying the propagation of internal tides and the distribution of turbulent mixing in both near and far fields. Our proposed workflow marks a key advancement toward standardization of seismic-derived ocean mixing rates and holds the potential to unlock massive marine seismic reflection datasets worldwide for ocean mixing characterization.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jingxuan Wei, jingxuan.wei@austin.utexas.edu
Save
  • Alford, M. H., and W. Munk, 2019: Internal tidal mixing. Encyclopedia of Ocean Sciences, 3rd ed. J. K. Cochran, H. J. Bokuniewicz, and P. L. Yager, Eds., Elsevier, 542–547, https://doi.org/10.1016/B978-0-12-409548-9.04082-3.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159162, https://doi.org/10.1038/nature01628.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Z. Zhao, 2007: Global patterns of low-mode internal-wave propagation. Part I: Energy and energy flux. J. Phys. Oceanogr., 37, 18291848, https://doi.org/10.1175/JPO3085.1.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., I. D. Howells, and A. A. Townsend, 1959: Small-scale variation of convected quantities like temperature in turbulent fluid Part 2. The case of large conductivity. J. Fluid Mech., 5, 134139, https://doi.org/10.1017/S0022112059000106.

    • Search Google Scholar
    • Export Citation
  • Bell, T. H., Jr., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, https://doi.org/10.1029/JC080i003p00320.

    • Search Google Scholar
    • Export Citation
  • Bray, N. A., and N. P. Fofonoff, 1981: Available potential energy for MODE eddies. J. Phys. Oceanogr., 11, 3047, https://doi.org/10.1175/1520-0485(1981)011<0030:APEFME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2018: Dynamics of an abyssal circulation driven by bottom-intensified mixing on slopes. J. Phys. Oceanogr., 48, 12571282, https://doi.org/10.1175/JPO-D-17-0125.1.

    • Search Google Scholar
    • Export Citation
  • Cangialosi, J., and J. Jelsema, 2019: Tropical cyclone report: Hurricane Olivia (EP172018). NHC Tech. Rep., 35 pp., https://www.nhc.noaa.gov/data/tcr/EP172018_Olivia.pdf.

  • Carbotte, S. M., A. Arnulf, M. Spiegelman, M. Lee, A. Harding, G. Kent, J. P. Canales, and M. Nedimović, 2020: Stacked sills forming a deep melt-mush feeder conduit beneath axial seamount. Geology, 48, 693697, https://doi.org/10.1130/G47223.1.

    • Search Google Scholar
    • Export Citation
  • Caulfield, C. P., 2021: Layering, instabilities, and mixing in turbulent stratified flows. Annu. Rev. Fluid Mech., 53, 113145, https://doi.org/10.1146/annurev-fluid-042320-100458.

    • Search Google Scholar
    • Export Citation
  • CCHDO, 2023: CCHDO hydrographic data archive. UC San Diego Library Digital Collections, accessed 14 October 2020, https://doi.org/10.6075/J0CCHAM8.

    • Search Google Scholar
    • Export Citation
  • Corrsin, S., 1951: On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys., 22, 469473, https://doi.org/10.1063/1.1699986.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1985: The energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oceanogr., 15, 10431059, https://doi.org/10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., S. Falahat, G. Madec, F. Roquet, J. Nycander, and C. Vic, 2019: Toward global maps of internal tide energy sinks. Ocean Modell., 137, 5275, https://doi.org/10.1016/j.ocemod.2019.03.010.

    • Search Google Scholar
    • Export Citation
  • Dickinson, A., and K. L. Gunn, 2022: The next decade of seismic oceanography: Possibilities, challenges and solutions. Front. Mar. Sci., 9, 736693, https://doi.org/10.3389/fmars.2022.736693.

    • Search Google Scholar
    • Export Citation
  • Dickinson, A., N. J. White, and C. P. Caulfield, 2017: Spatial variation of diapycnal diffusivity estimated from seismic imaging of internal wave field, Gulf of Mexico. J. Geophys. Res. Oceans, 122, 98279854, https://doi.org/10.1002/2017JC013352.

    • Search Google Scholar
    • Export Citation
  • Dickinson, A., N. J. White, and C. P. Caulfield, 2020: Time‐lapse acoustic imaging of mesoscale and fine‐scale variability within the Faroe‐Shetland Channel. J. Geophys. Res. Oceans, 125, e2019JC015861, https://doi.org/10.1029/2019JC015861.

    • Search Google Scholar
    • Export Citation
  • Estep, J., R. Reece, D. A. Kardell, G. L. Christeson, and R. L. Carlson, 2019: Seismic layer 2A: Evolution and thickness from 0‐to 70‐Ma crust in the slow‐intermediate spreading South Atlantic. J. Geophys. Res. Solid Earth, 124, 76337651, https://doi.org/10.1029/2019JB017302.

    • Search Google Scholar
    • Export Citation
  • Falder, M., N. J. White, and C. P. Caulfield, 2016: Seismic imaging of rapid onset of stratified turbulence in the South Atlantic Ocean. J. Phys. Oceanogr., 46, 10231044, https://doi.org/10.1175/JPO-D-15-0140.1.

    • Search Google Scholar
    • Export Citation
  • Fer, I., 2014: Near-inertial mixing in the central Arctic Ocean. J. Phys. Oceanogr., 44, 20312049, https://doi.org/10.1175/JPO-D-13-0133.1.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and J.-M. Campin, 2016: Turning ocean mixing upside down. J. Phys. Oceanogr., 46, 22392261, https://doi.org/10.1175/JPO-D-15-0244.1.

    • Search Google Scholar
    • Export Citation
  • Fortin, W. F. J., W. S. Holbrook, and R. W. Schmitt, 2016: Mapping turbulent diffusivity associated with oceanic internal lee waves offshore Costa Rica. Ocean Sci., 12, 601612, https://doi.org/10.5194/os-12-601-2016.

    • Search Google Scholar
    • Export Citation
  • Fortin, W. F. J., W. S. Holbrook, and R. W. Schmitt, 2017: Seismic estimates of turbulent diffusivity and evidence of nonlinear internal wave forcing by geometric resonance in the South China Sea. J. Geophys. Res. Oceans, 122, 80638078, https://doi.org/10.1002/2017JC012690.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1975: Space‐time scales of internal waves: A progress report. J. Geophys. Res., 80, 291297, https://doi.org/10.1029/JC080i003p00291.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Gill, A. E., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14, 11291151, https://doi.org/10.1175/1520-0485(1984)014<1129:OTBOIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Graves, R. W., 1996: Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seismol. Soc. Amer., 86, 10911106, https://doi.org/10.1785/BSSA0860041091.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, https://doi.org/10.1029/JC094iC07p09686.

    • Search Google Scholar
    • Export Citation
  • Gulick, S. P. S., and Coauthors, 2008: Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impact crater. Nat. Geosci., 1, 131135, https://doi.org/10.1038/ngeo103.

    • Search Google Scholar
    • Export Citation
  • Gulick, S. P. S., R. S. Reece, G. L. Christeson, H. van Avendonk, L. L. Worthington, and T. L. Pavlis, 2013: Seismic images of the transition fault and the unstable Yakutat–Pacific–North American triple junction. Geology, 41, 571574, https://doi.org/10.1130/G33900.1.

    • Search Google Scholar
    • Export Citation
  • Gunn, K. L., A. Dickinson, N. J. White, and C.-C. P. Caulfield, 2021: Vertical mixing and heat fluxes conditioned by a seismically imaged oceanic front. Front. Mar. Sci., 8, 697179, https://doi.org/10.3389/fmars.2021.697179.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., and M. Nagasawa, 2004: Latitudinal dependence of diapycnal diffusivity in the thermocline estimated using a finescale parameterization. Geophys. Res. Lett., 31, L01301, https://doi.org/10.1029/2003GL017998.

    • Search Google Scholar
    • Export Citation
  • Holbrook, W. S., P. Páramo, S. Pearse, and R. W. Schmitt, 2003: Thermohaline fine structure in an oceanographic front from seismic reflection profiling. Science, 301, 821824, https://doi.org/10.1126/science.1085116.

    • Search Google Scholar
    • Export Citation
  • Holbrook, W. S., I. Fer, R. W. Schmitt, D. Lizarralde, J. M. Klymak, L. C. Helfrich, and R. Kubichek, 2013: Estimating oceanic turbulence dissipation from seismic images. J. Atmos. Oceanic Technol., 30, 17671788, https://doi.org/10.1175/JTECH-D-12-00140.1.

    • Search Google Scholar
    • Export Citation
  • Jun, H., H.-T. Jou, C.-H. Kim, S. H. Lee, and H.-J. Kim, 2020: Random noise attenuation of sparker seismic oceanography data with machine learning. Ocean Sci., 16, 13671383, https://doi.org/10.5194/os-16-1367-2020.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and J. N. Moum, 2007a: Oceanic isopycnal slope spectra. Part I: Internal waves. J. Phys. Oceanogr., 37, 12151231, https://doi.org/10.1175/JPO3073.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and J. N. Moum, 2007b: Oceanic isopycnal slope spectra. Part II: Turbulence. J. Phys. Oceanogr., 37, 12321245, https://doi.org/10.1175/JPO3074.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11481164, https://doi.org/10.1175/JPO2885.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., M. H. Alford, R. Pinkel, R.-C. Lien, Y. J. Yang, and T.-Y. Tang, 2011: The breaking and scattering of the internal tide on a continental slope. J. Phys. Oceanogr., 41, 926945, https://doi.org/10.1175/2010JPO4500.1.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds. Numbers. In Dokl. Akad. Nauk SSSR, 30, 301.

    • Search Google Scholar
    • Export Citation
  • Krahmann, G., C. Papenberg, P. Brandt, and M. Vogt, 2009: Evaluation of seismic reflector slopes with a Yoyo‐CTD. Geophys. Res. Lett., 36, L00D02, https://doi.org/10.1029/2009GL038964.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., 2017: Internal-wave-driven mixing: Global geography and budgets. J. Phys. Oceanogr., 47, 13251345, https://doi.org/10.1175/JPO-D-16-0141.1.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., 2019: A unified model spectrum for anisotropic stratified and isotropic turbulence in the ocean and atmosphere. J. Phys. Oceanogr., 49, 385407, https://doi.org/10.1175/JPO-D-18-0092.1.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. S. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, https://doi.org/10.1038/35003164.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550, 207242, https://doi.org/10.1017/S0022112005008128.

    • Search Google Scholar
    • Export Citation
  • Lowery, C., L. Perez Cruz, J. Urrutia Fucugauchi, J. Wei, J. Austin, and P. Standring, 2024a: Raw high-resolution Multi-Channel Seismic reflection (MCS) field data from the JS2203 Gulf of Mexico Campeche bank seismic survey (2022). Marine Geoscience Data System, accessed 25 August 2023, https://doi.org/10.26022/IEDA/331509.

    • Search Google Scholar
    • Export Citation
  • Lowery, C., L. Perez Cruz, J. Urrutia Fucugauchi, J. Wei, J. Austin Jr., and P. Standring, 2024b: Seismic stratigraphy of contourite drift deposits associated with the loop current on the eastern Campeche bank, Gulf of Mexico. Paleoceanogr. Paleoclimatol., 39, e2023PA004701, https://doi.org/10.1029/2023PA004701.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., F. Wolk, and H. Yamazaki, 2002: Oceanic velocity microstructure measurements in the 20th century. J. Oceanogr., 58, 153174, https://doi.org/10.1023/A:1015837020019.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., M. H. Alford, O. Sun, R. Pinkel, Z. Zhao, and J. Klymak, 2013: Parametric subharmonic instability of the internal tide at 29°N. J. Phys. Oceanogr., 43, 1728, https://doi.org/10.1175/JPO-D-11-0108.1.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and Coauthors, 2017: Climate process team on internal wave–driven ocean mixing. Bull. Amer. Meteor. Soc., 98, 24292454, https://doi.org/10.1175/BAMS-D-16-0030.1.

    • Search Google Scholar
    • Export Citation
  • Mashayek, A., R. Ferrari, S. Merrifield, J. R. Ledwell, L. S. Laurent, and A. N. Garabato, 2017: Topographic enhancement of vertical turbulent mixing in the Southern Ocean. Nat. Commun., 8, 14197, https://doi.org/10.1038/ncomms14197.

    • Search Google Scholar
    • Export Citation
  • McBride, J. H., T. J. Henstock, R. S. White, and R. W. Hobbs, 1994: Seismic reflection profiling in deep water: Avoiding spurious reflectivity at lower-crustal and upper-mantle traveltimes. Tectonophysics, 232, 425435, https://doi.org/10.1016/0040-1951(94)90101-5.

    • Search Google Scholar
    • Export Citation
  • Melet, A., S. Legg, and R. Hallberg, 2016: Climatic impacts of parameterized local and remote tidal mixing. J. Climate, 29, 34733500, https://doi.org/10.1175/JCLI-D-15-0153.1.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., D. R. Caldwell, J. D. Nash, and G. D. Gunderson, 2002: Observations of boundary mixing over the continental slope. J. Phys. Oceanogr., 32, 21132130, https://doi.org/10.1175/1520-0485(2002)032<2113:OOBMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., and C. S. Cox, 1972: Oceanic fine structure. Geophys. Fluid Dyn., 3, 321345, https://doi.org/10.1080/03091927208236085.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. R., G. R. Stephenson, M. E. Inall, C. Balfour, A. Düsterhus, and J. A. M. Green, 2015: Turbulence and mixing by internal waves in the Celtic Sea determined from ocean glider microstructure measurements. J. Mar. Syst., 144, 5769, https://doi.org/10.1016/j.jmarsys.2014.11.005.

    • Search Google Scholar
    • Export Citation
  • Peterson, A. K., and I. Fer, 2014: Dissipation measurements using temperature microstructure from an underwater glider. Methods Oceanogr., 10, 4469, https://doi.org/10.1016/j.mio.2014.05.002.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, https://doi.org/10.1126/science.276.5309.93.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., A. C. N. Garabato, T. N. Huussen, B. M. Sloyan, and S. Waterman, 2014: Finescale parameterizations of turbulent dissipation. J. Geophys. Res. Oceans, 119, 13831419, https://doi.org/10.1002/2013JC008979.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., J. I. Gobat, C. M. Lee, and G. B. Shilling, 2017: Multi-month dissipation estimates using microstructure from autonomous underwater gliders. Oceanography, 30 (2), 4950, https://doi.org/10.5670/oceanog.2017.219.

    • Search Google Scholar
    • Export Citation
  • Reece, R., and G. Christeson, 2018: Multi-channel seismic shot data from the South Atlantic Ocean acquired during R/V Marcus G. Langseth expedition MGL1601 (2016). Marine Geoscience Data System, accessed 24 June 2022, https://doi.org/10.1594/IEDA/323597.

    • Search Google Scholar
    • Export Citation
  • Riley, J. J., and E. Lindborg, 2008: Stratified turbulence: A possible interpretation of some geophysical turbulence measurements. J. Atmos. Sci., 65, 24162424, https://doi.org/10.1175/2007JAS2455.1.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Coauthors, 2019: On the future of Argo: A global, full-depth, multi-disciplinary array. Front. Mar. Sci., 6, 439, https://doi.org/10.3389/fmars.2019.00439.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B., H. Song, C. Dong, and L. Pinheiro, 2009: Water column seismic images as maps of temperature gradient. Oceanography, 22 (1), 192205, https://doi.org/10.5670/oceanog.2009.19.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B. R., 2018: Seismic oceanography’s failure to flourish: A possible solution. J. Geophys. Res. Oceans, 123, 47, https://doi.org/10.1002/2017JC013736.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and Coauthors, 2003: From tides to mixing along the Hawaiian Ridge. Science, 301, 355357, https://doi.org/10.1126/science.1085837.

    • Search Google Scholar
    • Export Citation
  • Ryan, W. B. F., and Coauthors, 2009: Global multi‐resolution topography synthesis. Geochem. Geophys. Geosyst., 10, Q03014, https://doi.org/10.1029/2008GC002332.

    • Search Google Scholar
    • Export Citation
  • Sallares, V., J. F. Mojica, B. Biescas, D. Klaeschen, and E. Gràcia, 2016: Characterization of the submesoscale energy cascade in the Alboran Sea thermocline from spectral analysis of high‐resolution MCS data. Geophys. Res. Lett., 43, 64616468, https://doi.org/10.1002/2016GL069782.

    • Search Google Scholar
    • Export Citation
  • Schmit, R. W., J. M. Toole, R. L. Koehler, E. C. Mellinger, and K. W. Doherty, 1988: The development of a fine-and microstructure profiler. J. Atmos. Oceanic Technol., 5, 484500, https://doi.org/10.1175/1520-0426(1988)005<0484:TDOAFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Serov, P., and Coauthors, 2017: Postglacial response of Arctic Ocean gas hydrates to climatic amelioration. Proc. Natl. Acad. Sci. USA, 114, 62156220, https://doi.org/10.1073/pnas.1619288114.

    • Search Google Scholar
    • Export Citation
  • Sheen, K. L., N. J. White, and R. W. Hobbs, 2009: Estimating mixing rates from seismic images of oceanic structure. Geophys. Res. Lett., 36, L00D04, https://doi.org/10.1029/2009GL040106.

    • Search Google Scholar
    • Export Citation
  • Sheen, K. L., N. White, C. P. Caulfield, and R. W. Hobbs, 2011: Estimating geostrophic shear from seismic images of oceanic structure. J. Atmos. Oceanic Technol., 28, 11491154, https://doi.org/10.1175/JTECH-D-10-05012.1.

    • Search Google Scholar
    • Export Citation
  • Shillington, D., A. Watts, R. Dunn, P. Wessel, and G. Ito, 2020: Multi-channel seismic shot data from the Hawaii-emperor seamount chain acquired during Langseth cruise MGL1806 (2018). Marine Geoscience Data System, accessed 30 March 2023, https://doi.org/10.1594/IEDA/324706.

    • Search Google Scholar
    • Export Citation
  • Shillington, D. J., and Coauthors, 2015: Link between plate fabric, hydration and subduction zone seismicity in Alaska. Nat. Geosci., 8, 961964, https://doi.org/10.1038/ngeo2586.

    • Search Google Scholar
    • Export Citation
  • Song, H., J. Chen, L. M. Pinheiro, B. Ruddick, W. Fan, Y. Gong, and K. Zhang, 2021: Progress and prospects of seismic oceanography. Deep-Sea Res. I, 177, 103631, https://doi.org/10.1016/j.dsr.2021.103631.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899, https://doi.org/10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., J. M. Toole, and R. W. Schmitt, 2001: Buoyancy forcing by turbulence above rough topography in the abyssal Brazil basin. J. Phys. Oceanogr., 31, 34763495, https://doi.org/10.1175/1520-0485(2001)031<3476:BFBTAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., S. P. S. Gulick, J. Sun, L. Sun, and Z. Jing, 2020: Submesoscale features and turbulent mixing of an oblique anticyclonic eddy in the Gulf of Alaska investigated by marine seismic survey data. J. Geophys. Res. Oceans, 125, e2019JC015393, https://doi.org/10.1029/2019JC015393.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., Z. Jing, J. Lin, and J. Sun, 2021: Diapycnal mixing in the subthermocline of the Mariana ridge from high-resolution seismic images. J. Phys. Oceanogr., 51, 12831300, https://doi.org/10.1175/JPO-D-20-0120.1.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., Z. Jing, J. Li, and J. Sun, 2022: Enhanced diapycnal mixing in the deep ocean around the island of Taiwan. J. Geophys. Res. Oceans, 127, e2021JC018034, https://doi.org/10.1029/2021JC018034.

    • Search Google Scholar
    • Export Citation
  • Vic, C., and Coauthors, 2019: Deep-ocean mixing driven by small-scale internal tides. Nat. Commun., 10, 2099, https://doi.org/10.1038/s41467-019-10149-5.

    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Search Google Scholar
    • Export Citation
  • Watts, A. B., I. Grevemeyer, D. J. Shillington, R. A. Dunn, B. Boston, and L. Gómez de La Peña, 2021: Seismic structure, gravity anomalies and flexure along the Emperor Seamount chain. J. Geophys. Res. Solid Earth, 126, e2020JB021109, https://doi.org/10.1029/2020JB021109.

    • Search Google Scholar
    • Export Citation
  • Wei, J., K. L. Gunn, and R. Reece, 2022: Mid-ocean ridge and storm enhanced mixing in the central South Atlantic thermocline. Front. Mar. Sci., 8, 771973, https://doi.org/10.3389/fmars.2021.771973.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., 2021: Best practices for comparing ocean turbulence measurements across spatiotemporal scales. J. Atmos. Oceanic Technol., 38, 837841, https://doi.org/10.1175/JTECH-D-20-0175.1.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., L. D. Talley, and J. A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett., 39, L18612, https://doi.org/10.1029/2012GL053196.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., J. A. MacKinnon, and L. D. Talley, 2018: Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nat. Geosci., 11, 842847, https://doi.org/10.1038/s41561-018-0213-6.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., C. De Lavergne, A. C. Naveira Garabato, J. M. Klymak, J. A. Mackinnon, and K. L. Sheen, 2020: Internal wave-driven mixing: Governing processes and consequences for climate. Nat. Rev. Earth Environ., 1, 606621, https://doi.org/10.1038/s43017-020-0097-z.

    • Search Google Scholar
    • Export Citation
  • Yang, S., H. Song, B. Coakley, and K. Zhang, 2023: Enhanced mixing at the edges of mesoscale eddies observed from high‐resolution seismic data in the western Arctic Ocean. J. Geophys. Res. Oceans, 128, e2023JC019964, https://doi.org/10.1029/2023JC019964.

    • Search Google Scholar
    • Export Citation
  • Yilmaz, Ö., 2001: Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. Society of Exploration Geophysicists, 2027 pp.

  • Zhang, K., W. Zuo, Y. Chen, D. Meng, and L. Zhang, 2017: Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans. Image Process., 26, 31423155, https://doi.org/10.1109/TIP.2017.2662206.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. B. Girton, L. Rainville, and H. L. Simmons, 2016: Global observations of open-ocean mode-1 M2 internal tides. J. Phys. Oceanogr., 46, 16571684, https://doi.org/10.1175/JPO-D-15-0105.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 126 126 126
Full Text Views 65 65 14
PDF Downloads 61 61 15