An Instantaneous CCN Spectrometer

James G. Hudson Desert Research Institute, University of Nevada System, Reno, Nevada

Search for other papers by James G. Hudson in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A thermal gradient diffusion cloud chamber with a supersaturation field that increases along the path of the flow of sample is used as a cloud condensation nucleus (CCN) spectrometer. The CCN spectrum is derived from the final droplet size distribution which has been determined to be related to the nucleus critical super-saturation based on routine calibration procedures using laboratory-produced monodisperse salt particles. The instrument is compared against a previously reported CCN counter on natural and laboratory-produced aerosol and against an absolute CN counter on the monodisperse aerosol. Preliminary results of atmospheric measurements are given.

This device produces a CCN spectrum over the entire useful range of interest for cloud physics (0.01% to 1% supersaturation). More than 40 channels of resolution over this range are simultaneously provided. Data can be collected on a continuous basis for integration times as short as 2 seconds. The instrument has obtained data from four different airborne platforms as well as from a mobile surface platform. The number of channels allows the CCN spectrum to be displayed differentially instead of the usual cumulative display traditionally used in cloud physics.

Abstract

A thermal gradient diffusion cloud chamber with a supersaturation field that increases along the path of the flow of sample is used as a cloud condensation nucleus (CCN) spectrometer. The CCN spectrum is derived from the final droplet size distribution which has been determined to be related to the nucleus critical super-saturation based on routine calibration procedures using laboratory-produced monodisperse salt particles. The instrument is compared against a previously reported CCN counter on natural and laboratory-produced aerosol and against an absolute CN counter on the monodisperse aerosol. Preliminary results of atmospheric measurements are given.

This device produces a CCN spectrum over the entire useful range of interest for cloud physics (0.01% to 1% supersaturation). More than 40 channels of resolution over this range are simultaneously provided. Data can be collected on a continuous basis for integration times as short as 2 seconds. The instrument has obtained data from four different airborne platforms as well as from a mobile surface platform. The number of channels allows the CCN spectrum to be displayed differentially instead of the usual cumulative display traditionally used in cloud physics.

Save