Accuracy of Vertical Air Motions from Nadir-Viewing Doppler Airborne Radars

Gerald M. Heymsfield Laboratory for Atmospheres, NASA/Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Gerald M. Heymsfield in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper presents an analysis of the uncertainties expected in vertical velocities using a vertically pointing airborne Doppler radar which has a nadir or zenith-pointing beam. To examine the expected uncertainty, the Doppler velocity equation for a moving platform is derived and it is applied to cases of nadir-fixed and stabilized beams. The main emphasis of the paper is on the effect of platform stability on the deduced vertical air motions and it is shown that the antenna must be stabilized to obtain desired accuracy in the vertical velocity measurements.

Abstract

This paper presents an analysis of the uncertainties expected in vertical velocities using a vertically pointing airborne Doppler radar which has a nadir or zenith-pointing beam. To examine the expected uncertainty, the Doppler velocity equation for a moving platform is derived and it is applied to cases of nadir-fixed and stabilized beams. The main emphasis of the paper is on the effect of platform stability on the deduced vertical air motions and it is shown that the antenna must be stabilized to obtain desired accuracy in the vertical velocity measurements.

Save