A Parallel Algorithm for Variational Assimilation in Oceanography and Meteorology

Andrew F. Bennett College of Oceanography, Oregon State University, Corvallis, Oregon

Search for other papers by Andrew F. Bennett in
Current site
Google Scholar
PubMed
Close
and
Jerome R. Baugh Intel Supercomputer Systems Division, Beaverton, Oregon

Search for other papers by Jerome R. Baugh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A parallel algorithm is described for variational assimilation of observations into oceanic and atmospheric models. The algorithm may be coded first for execution on a serial computer and then trivially modified for execution on a parallel computer such as the Intel iPSC/860. The speedup factor for parallel execution is roughly P(2M+3) (2M+3P)−1, where P is the number of processors and M is the number of observations (MP). The speedup factor approaches P from below as M→∞.

The algorithm has been applied in serial form to ocean tides (Bennett and McIntosh 1982; McIntosh and Bennett 1984; Bennett 1985) and oceanic equatorial interannual variability (Bennett 1990). It has been applied in parallel form to oceanic synoptic-scale circulation (Bennett and Thorburn 1992); a parallel application to operational forecasting of tropical cyclones is in progress (Bennett et al. 1992).

For the sake of simplicity, the parallel algorithm is described here for a model consisting of a linear, first-order wave equation with initial and boundary conditions plus a dataset consisting of observations at isolated points in space and time. However, measurements of parallel performance are given for a nonlinear quasigeostrophic model.

Abstract

A parallel algorithm is described for variational assimilation of observations into oceanic and atmospheric models. The algorithm may be coded first for execution on a serial computer and then trivially modified for execution on a parallel computer such as the Intel iPSC/860. The speedup factor for parallel execution is roughly P(2M+3) (2M+3P)−1, where P is the number of processors and M is the number of observations (MP). The speedup factor approaches P from below as M→∞.

The algorithm has been applied in serial form to ocean tides (Bennett and McIntosh 1982; McIntosh and Bennett 1984; Bennett 1985) and oceanic equatorial interannual variability (Bennett 1990). It has been applied in parallel form to oceanic synoptic-scale circulation (Bennett and Thorburn 1992); a parallel application to operational forecasting of tropical cyclones is in progress (Bennett et al. 1992).

For the sake of simplicity, the parallel algorithm is described here for a model consisting of a linear, first-order wave equation with initial and boundary conditions plus a dataset consisting of observations at isolated points in space and time. However, measurements of parallel performance are given for a nonlinear quasigeostrophic model.

Save