• Agrawal, Y. C., E. A. Terray, M. A. Donelan, P. A. Hwang, A. J. Williams III, W. M. Drennan, K. K. Kahma, and S. A. Kitaigorodskii, 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359, 219220, https://doi.org/10.1038/359219a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asher, W. E., A. T. Jessup, R. Branch, and D. Clark, 2014a: Observations of rain-induced near-surface salinity anomalies. J. Geophys. Res. Oceans, 119, 54835500, https://doi.org/10.1002/2014JC009954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asher, W. E., A. T. Jessup, and D. Clark, 2014b: Stable near-surface ocean salinity stratifications due to evaporation observed during STRASSE. J. Geophys. Res. Oceans, 119, 32193233, https://doi.org/10.1002/2014JC009808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1959: Small-scale variation of convected quantities like temperature in turbulent fluid part I. General discussion and the case of small conductivity. J. Fluid Mech., 5, 113133, https://doi.org/10.1017/S002211205900009X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutin, J., and Coauthors, 2016: Satellite and in situ salinity: Understanding near-surface stratification and subfootprint variability. Bull. Amer. Meteor. Soc., 97, 13911407, https://doi.org/10.1175/BAMS-D-15-00032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callaghan, A. H., B. Ward, and J. Vialard, 2014: Influence of surface forcing on near-surface and mixing layer turbulence in the tropical Indian Ocean. Deep-Sea Res. I, 94, 107123, https://doi.org/10.1016/j.dsr.2014.08.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., 2019: SPURS-2 research vessel meteorological series data for the E. tropical Pacific field campaign R/V Revelle cruises, version 1.0. PO.DAAC, accessed 27 April 2020, https://doi.org/10.5067/SPUR2-MET00.

    • Crossref
    • Export Citation
  • Clayson, C. A., J. Edson, A. Paget, R. Graham, and B. Greenwood, 2019: Effects of rainfall on the atmosphere and ocean during SPURS-2. Oceanography, 32 (2), 8697, https://doi.org/10.5670/oceanog.2019.216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derakhti, M., J. Thomson, and J. T. Kirby, 2020: Sparse sampling of intermittent turbulence generated by breaking surface waves. J. Phys. Oceanogr., 50, 867885, https://doi.org/10.1175/JPO-D-19-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., and D. R. Caldwell, 1980: The Batchelor spectrum and dissipation in the upper ocean. J. Geophys. Res., 85, 19101916, https://doi.org/10.1029/JC085iC04p01910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., J. G. Richman, C. G. Hansen, and M. D. Pearson, 1981: Near-surface turbulence measurements in a lake. Nature, 290, 390392, https://doi.org/10.1038/290390a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., J. A. Barth, A. Y. Erofeev, G. H. May, and H. W. Wijesekera, 2003: MicroSoar: A new instrument for measuring microscale turbulence from rapidly moving submerged platforms. J. Atmos. Oceanic Technol., 20, 16711684, https://doi.org/10.1175/1520-0426(2003)020<1671:MANIFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drennan, W., M. Donelan, E. Terray, and K. Katsaros, 1996: Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr., 26, 808815, https://doi.org/10.1175/1520-0485(1996)026<0808:OTDMIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drushka, K., 2019: SPURS-2 towed surface salinity profile (SSP) data for the E. tropical Pacific R/V Revelle cruises, version 1.0. PO.DAAC, accessed 24 October 2019, https://doi.org/10.5067/SPUR2-SSP00.

    • Crossref
    • Export Citation
  • Drushka, K., W. E. Asher, B. Ward, and K. Walesby, 2016: Understanding the formation and evolution of rain-formed fresh lenses at the ocean surface. J. Geophys. Res. Oceans, 121, 26732689, https://doi.org/10.1002/2015JC011527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drushka, K., W. E. Asher, A. T. Jessup, E. Thompson, S. Iyer, and D. Clark, 2019: Capturing fresh lenses with the surface salinity profiler. Oceanography, 32 (2), 7685, https://doi.org/10.5670/oceanog.2019.215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esters, L., Ø. Breivik, S. Landwehr, A. ten Doeschate, G. Sutherland, K. H. Christensen, J.-R. Bidlot, and B. Ward, 2018: Turbulence scaling comparisons in the ocean surface boundary layer. J. Geophys. Res. Oceans, 123, 21722191, https://doi.org/10.1002/2017JC013525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1985: Evolution of scalar spectra with the decay of turbulence in a stratified fluid. J. Fluid Mech., 159, 379407, https://doi.org/10.1017/S0022112085003263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1989: Ocean turbulence. Annu. Rev. Fluid. Mech., 21, 419451, https://doi.org/10.1146/annurev.fl.21.010189.002223.

  • Gemmrich, J., 2010: Strong turbulence in the wave crest region. J. Phys. Oceanogr., 40, 583595, https://doi.org/10.1175/2009JPO4179.1.

  • Gibson, C. H., and W. H. Schwarz, 1963: The universal equilibrium spectra of turbulent velocity and scalar fields. J. Fluid Mech., 16, 365384, https://doi.org/10.1017/S0022112063000835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goto, Y., I. Yasuda, and M. Nagasawa, 2016: Turbulence estimation using fast-response thermistors attached to a free-fall vertical microstructure profiler. J. Atmos. Oceanic Technol., 33, 20652078, https://doi.org/10.1175/JTECH-D-15-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, H. L., B. A. Hughes, W. M. Vogel, and A. Moilliet, 1968: The spectrum of temperature fluctuations in turbulent flow. J. Fluid Mech., 34, 423442, https://doi.org/10.1017/S0022112068001990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1999: Uncertainties and limitations in measuring ε and χT. J. Atmos. Oceanic Technol., 16, 14831490, https://doi.org/10.1175/1520-0426(1999)016<1483:UALIMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., and T. B. Meagher, 1980: The dynamic response of glass rod thermistors. J. Geophys. Res., 85, 27792786, https://doi.org/10.1029/JC085iC05p02779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., E. D’Asaro, J. Riley, and E. Kunze, 2018: Mixing efficiency in the ocean. Annu. Rev. Mar. Sci., 10, 443473, https://doi.org/10.1146/annurev-marine-121916-063643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, E. L., and F. Veron, 2017: Near-surface turbulence and buoyancy induced by heavy rainfall. J. Fluid Mech., 830, 602630, https://doi.org/10.1017/jfm.2017.602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, E. L., F. Veron, D. T. Ho, M. C. Reid, P. Orton, and W. R. McGillis, 2012: Nonlinear interaction between rain-and wind-induced air-water gas exchange. J. Geophys. Res., 117, C03034, https://doi.org/10.1029/2011JC007693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L., and T. Herbers, 1986: Statistics of breaking waves observed as whitecaps in the open sea. J. Phys. Oceanogr., 16, 290297, https://doi.org/10.1175/1520-0485(1986)016<0290:SOBWOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C. J., and F. Qiao, 2010: Wave-turbulence interaction and its induced mixing in the upper ocean. J. Geophys. Res., 115, C04026, https://doi.org/10.1029/2009JC005853.

    • Search Google Scholar
    • Export Citation
  • Kocsis, O., H. Prandke, A. Stips, A. Simon, and A. Wüest, 1999: Comparison of dissipation of turbulent kinetic energy determined from shear and temperature microstructure. J. Mar. Syst., 21, 6784, https://doi.org/10.1016/S0924-7963(99)00006-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindstrom, E. J., J. B. Edson, J. J. Schanze, and A. Y. Shcherbina, 2019: SPURS-2: Salinity Processes in the Upper-Ocean Regional Study 2—The eastern equatorial Pacific experiment. Oceanography, 32 (2), 1519, https://doi.org/10.5670/oceanog.2019.207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, C. P., and M. C. Gregg, 1989: Similarity scaling of viscous and thermal dissipation in a convecting surface boundary layer. J. Geophys. Res., 94, 62736284, https://doi.org/10.1029/JC094iC05p06273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., O. Hertzman, and T. R. Osborn, 1977: The spectral response of thermistors. Deep-Sea Res., 24, 951970, https://doi.org/10.1016/0146-6291(77)90565-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moulin, A. J., J. N. Moum, and E. L. Shroyer, 2018: Evolution of turbulence in the diurnal warm layer. J. Phys. Oceanogr., 48, 383396, https://doi.org/10.1175/JPO-D-17-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and J. D. Nash, 2009: Mixing measurements on an equatorial ocean mooring. J. Atmos. Oceanic Technol., 26, 317336, https://doi.org/10.1175/2008JTECHO617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., M. Gregg, R. Lien, and M. Carr, 1995: Comparison of turbulence kinetic energy dissipation rate estimates from two ocean microstructure profilers. J. Atmos. Oceanic Technol., 12, 346366, https://doi.org/10.1175/1520-0426(1995)012<0346:COTKED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., D. R. Caldwell, M. J. Zelman, and J. N. Moum, 1999: A thermocouple probe for high-speed temperature measurement in the ocean. J. Atmos. Oceanic Technol., 16, 14741482, https://doi.org/10.1175/1520-0426(1999)016<1474:ATPFHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oakey, N. S., 1982: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12, 256271, https://doi.org/10.1175/1520-0485(1982)012<0256:DOTROD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., and C. S. Cox, 1972: Oceanic fine structure. Geophys. Astrophys. Fluid Dyn., 3, 321345, https://doi.org/10.1080/03091927208236085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, A. K., and I. Fer, 2014: Dissipation measurements using temperature microstructure from an underwater glider. Methods Oceanogr., 10, 4469, https://doi.org/10.1016/j.mio.2014.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruddick, B., A. Anis, and K. Thompson, 2000: Maximum likelihood spectral fitting: The Batchelor spectrum. J. Atmos. Oceanic Technol., 17, 15411555, https://doi.org/10.1175/1520-0426(2000)017<1541:MLSFTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez, X., E. Roget, J. Planella, and F. Forcat, 2011: Small-scale spectrum of a scalar field in water: The Batchelor and Kraichnan models. J. Phys. Oceanogr., 41, 21552167, https://doi.org/10.1175/JPO-D-11-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., P. O. Zavialov, and J. N. Moum, 1997: Decay of turbulence in the upper ocean following sudden isolation from surface forcing. J. Phys. Oceanogr., 27, 810822, https://doi.org/10.1175/1520-0485(1997)027<0810:DOTITU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A., and R. Lukas, 2003: Observation of wave-enhanced turbulence in the near-surface layer of the ocean during TOGA COARE. Deep-Sea Res. I, 50, 371395, https://doi.org/10.1016/S0967-0637(03)00004-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A., N. V. Vershinsky, and V. A. Bezverchnii, 1988: Small-scale turbulence measurements in the thin surface layer of the ocean. Deep-Sea Res., 35A, 18591874, https://doi.org/10.1016/0198-0149(88)90113-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprintall, J., 2019: SPURS-2 shipboard acoustic Doppler current profiler data for E. tropical Pacific R/V Revelle cruises, version 1.0. PO.DAAC, accessed 24 October 2019, https://doi.org/10.5067/SPUR2-ADCP0.

    • Crossref
    • Export Citation
  • Sutherland, G., L. Marié, G. Reverdin, K. H. Christensen, G. Broström, and B. Ward, 2016: Enhanced turbulence associated with the diurnal jet in the ocean surface boundary layer. J. Phys. Oceanogr., 46, 30513067, https://doi.org/10.1175/JPO-D-15-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, P., and W. K. Melville, 2015: Field measurements of surface and near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr., 45, 943965, https://doi.org/10.1175/JPO-D-14-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, 164A, 476490, https://doi.org/10.1098/rspa.1938.0032.

  • Terray, E. A., M. A. Donelan, Y. C. Agrawal, W. M. Drennan, K. K. Kahma, A. J. Williams, P. A. Hwang, and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807, https://doi.org/10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, J., 2012: Wave breaking dissipation observed with “SWIFT” drifters. J. Atmos. Oceanic Technol., 29, 18661882, https://doi.org/10.1175/JTECH-D-12-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, J., M. S. Schwendeman, S. F. Zippel, S. Moghimi, J. Gemmrich, and W. E. Rogers, 2016: Wave-breaking turbulence in the ocean surface layer. J. Phys. Oceanogr., 46, 18571870, https://doi.org/10.1175/JPO-D-15-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2005: The Turbulent Ocean. Cambridge University Press, 496 pp.

  • Thorpe, S. A., 2007: An Introduction to Ocean Turbulence. Cambridge University Press, 264 pp.

  • Thorpe, S. A., and P. Humphries, 1980: Bubbles and breaking waves. Nature, 283, 463465, https://doi.org/10.1038/283463a0.

  • Walesby, K., J. Vialard, P. J. Minnett, A. H. Callaghan, and B. Ward, 2015: Observations indicative of rain-induced double diffusion in the ocean surface boundary layer. Geophys. Res. Lett., 42, 39633972, https://doi.org/10.1002/2015GL063506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and R. X. Huang, 2004: Wind energy input to the surface waves. J. Phys. Oceanogr., 34, 12761280, https://doi.org/10.1175/1520-0485(2004)034<1276:WEITTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, B., T. Fristedt, A. H. Callaghan, G. Sutherland, X. Sanchez, J. Vialard, and A. Doeschate, 2014: The Air–Sea Interaction Profiler (ASIP): An autonomous upwardly rising profiler for microstructure measurements in the upper ocean. J. Atmos. Oceanic Technol., 31, 22462267, https://doi.org/10.1175/JTECH-D-14-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., C. A. Paulson, and A. Huyer, 1999: The effect of rainfall on the surface layer during a westerly wind burst in the western equatorial Pacific. J. Phys. Oceanogr., 29, 612632, https://doi.org/10.1175/1520-0485(1999)029<0612:TEOROT>2.0.CO;2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiles, P. J., T. P. Rippeth, J. H. Simpson, and P. J. Hendricks, 2006: A novel technique for measuring the rate of turbulent dissipation in the marine environment. Geophys. Res. Lett., 33, L21608, https://doi.org/10.1029/2006GL027050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and J. N. Moum, 2010: Inertial-convective subrange estimates of thermal variance dissipation rate from moored temperature measurements. J. Atmos. Oceanic Technol., 27, 19501959, https://doi.org/10.1175/2010JTECHO746.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zippel, S. F., J. Thomson, and G. Farquharson, 2018: Turbulence from breaking surface waves at a river mouth. J. Phys. Oceanogr., 48, 435453, https://doi.org/10.1175/JPO-D-17-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zippel, S. F., T. Maksym, M. Scully, P. Sutherland, and D. Dumont, 2020: Measurements of enhanced near-surface turbulence under windrows. J. Phys. Oceanogr., 50, 197215, https://doi.org/10.1175/JPO-D-18-0265.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 33 33 33
Full Text Views 10 10 10
PDF Downloads 12 12 12

Estimating Turbulent Kinetic Energy Dissipation Rate Using Microstructure Data from the Ship-Towed Surface Salinity Profiler

View More View Less
  • 1 Applied Physics Laboratory, University of Washington, Seattle, Washington
  • 2 School of Oceanography, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

As part of the second Salinity Processes in the Upper Ocean Regional Study (SPURS-2), the ship-towed Surface Salinity Profiler (SSP) was used to measure near-surface turbulence and stratification on horizontal spatial scales of tens of kilometers over time scales of hours, resolving structures outside the observational capabilities of autonomous or Lagrangian platforms. Observations of microstructure variability of temperature were made at approximately 37 cm depth from the SSP. The platform can be used to measure turbulent kinetic energy dissipation rate when the upper ocean is sufficiently stratified by calculating temperature gradient spectra from the microstructure data and fitting to low-wavenumber theoretical Batchelor spectra. Observations of dissipation rate made across a range of wind speeds under 12 m s−1 were consistent with the results of previous studies of near-surface turbulence and with existing turbulence scalings. Microstructure sensors mounted on the SSP can be used to investigate the spatial structure of near-surface turbulence. This provides a new means to study the connections between near-surface turbulence and the larger-scale distributions of heat and salt in the near-surface layer of the ocean.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Suneil Iyer, iyersk@uw.edu

Abstract

As part of the second Salinity Processes in the Upper Ocean Regional Study (SPURS-2), the ship-towed Surface Salinity Profiler (SSP) was used to measure near-surface turbulence and stratification on horizontal spatial scales of tens of kilometers over time scales of hours, resolving structures outside the observational capabilities of autonomous or Lagrangian platforms. Observations of microstructure variability of temperature were made at approximately 37 cm depth from the SSP. The platform can be used to measure turbulent kinetic energy dissipation rate when the upper ocean is sufficiently stratified by calculating temperature gradient spectra from the microstructure data and fitting to low-wavenumber theoretical Batchelor spectra. Observations of dissipation rate made across a range of wind speeds under 12 m s−1 were consistent with the results of previous studies of near-surface turbulence and with existing turbulence scalings. Microstructure sensors mounted on the SSP can be used to investigate the spatial structure of near-surface turbulence. This provides a new means to study the connections between near-surface turbulence and the larger-scale distributions of heat and salt in the near-surface layer of the ocean.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Suneil Iyer, iyersk@uw.edu
Save