Feasibility of estimating sea surface height anomalies from surface ocean currents and winds

Larry W. O’Neill aCollege of Earth, Ocean, and Atmospheric Sciences Oregon State University, Corvallis, Oregon

Search for other papers by Larry W. O’Neill in
Current site
Google Scholar
PubMed
Close
,
Dudley B. Chelton aCollege of Earth, Ocean, and Atmospheric Sciences Oregon State University, Corvallis, Oregon

Search for other papers by Dudley B. Chelton in
Current site
Google Scholar
PubMed
Close
,
Ernesto Rodríguez bJet Propulsion Laboratory, Pasadena, California

Search for other papers by Ernesto Rodríguez in
Current site
Google Scholar
PubMed
Close
,
Roger Samelson aCollege of Earth, Ocean, and Atmospheric Sciences Oregon State University, Corvallis, Oregon

Search for other papers by Roger Samelson in
Current site
Google Scholar
PubMed
Close
, and
Alexander Wineteer bJet Propulsion Laboratory, Pasadena, California

Search for other papers by Alexander Wineteer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We propose a method to reconstruct sea surface height anomalies (SSHA) from vector surface currents and winds. This analysis is motivated by the proposed satellite ODYSEA, which is a Doppler scatterometer that measures coincident surface vector winds and currents. If it is feasible to estimate SSHA from these measurements, thenODYSEA could provide collocated fields of SSHA, currents, and winds over a projected wide swath of ∼1700 km. The reconstruction also yields estimates of the low-frequency surface geostrophic, Ekman, irrotational and non-divergent current components and a framework for separation of balanced and unbalanced motions. The reconstruction is based on a steady-state surface momentum budget including the Ekman drift, Coriolis acceleration, and horizontal advection. The horizontal SSHA gradient is obtained as a residual of these terms, and the unknown SSHA is solved for using a Helmholtz-Hodge Decomposition given an imposed SSHA boundary condition. We develop the reconstruction using surface currents, winds, and SSHA off the U.S. west coast from a 43-day coupled ROMS/WRF simulation. We also consider how simulated ODYSEA measurement and sampling errors and boundary condition uncertainties impact reconstruction accuracy. We find that temporal smoothing of the currents for periods of 150 hours is necessary to mitigate large reconstruction errors associated with unbalanced near-inertial motions. For the most realistic case of projected ODYSEA measurement noise and temporal sampling, the reconstructed SSHA fields have an RMS error of 2.1 cm and a model skill (squared correlation) of 0.958 with 150-hour resolution. We conclude that an accurate SSHA reconstruction is feasible using information measured by ODYSEA and external SSHA boundary conditions.

© 2024 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of the default AMS reuse license. For information regarding reuse and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Larry W. O’Neill, larry.oneill@oregonstate.edu

Abstract

We propose a method to reconstruct sea surface height anomalies (SSHA) from vector surface currents and winds. This analysis is motivated by the proposed satellite ODYSEA, which is a Doppler scatterometer that measures coincident surface vector winds and currents. If it is feasible to estimate SSHA from these measurements, thenODYSEA could provide collocated fields of SSHA, currents, and winds over a projected wide swath of ∼1700 km. The reconstruction also yields estimates of the low-frequency surface geostrophic, Ekman, irrotational and non-divergent current components and a framework for separation of balanced and unbalanced motions. The reconstruction is based on a steady-state surface momentum budget including the Ekman drift, Coriolis acceleration, and horizontal advection. The horizontal SSHA gradient is obtained as a residual of these terms, and the unknown SSHA is solved for using a Helmholtz-Hodge Decomposition given an imposed SSHA boundary condition. We develop the reconstruction using surface currents, winds, and SSHA off the U.S. west coast from a 43-day coupled ROMS/WRF simulation. We also consider how simulated ODYSEA measurement and sampling errors and boundary condition uncertainties impact reconstruction accuracy. We find that temporal smoothing of the currents for periods of 150 hours is necessary to mitigate large reconstruction errors associated with unbalanced near-inertial motions. For the most realistic case of projected ODYSEA measurement noise and temporal sampling, the reconstructed SSHA fields have an RMS error of 2.1 cm and a model skill (squared correlation) of 0.958 with 150-hour resolution. We conclude that an accurate SSHA reconstruction is feasible using information measured by ODYSEA and external SSHA boundary conditions.

© 2024 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of the default AMS reuse license. For information regarding reuse and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Larry W. O’Neill, larry.oneill@oregonstate.edu
Save