All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 205 75 14
PDF Downloads 115 79 12

A Numerical Solution to the Equation of Radiative Transfer

View More View Less
  • 1 The University of Arizona, Tucson
Restricted access

Abstract

A numerical method of solving the equation of radiative transfer for a plane parallel, horizontally homogeneous medium is presented. The method is applicable for problems with nonconservative scattering as well as for conservative scattering problems. Comparison of results for the reflected and transmitted radiation from this method with existing solutions for conservative Rayleigh scattering shows that, for optical depths up to 1-0, the present scheme is accurate to within ±0.007 unit total intensity and ±1.0 per cent polarization for an incident flux of π units per unit normal area. Results are presented for the reflected and transmitted intensity and per cent polarization for optical depths 2.0 and 4.0, for a particular problem of conservative Rayleigh scattering.

Abstract

A numerical method of solving the equation of radiative transfer for a plane parallel, horizontally homogeneous medium is presented. The method is applicable for problems with nonconservative scattering as well as for conservative scattering problems. Comparison of results for the reflected and transmitted radiation from this method with existing solutions for conservative Rayleigh scattering shows that, for optical depths up to 1-0, the present scheme is accurate to within ±0.007 unit total intensity and ±1.0 per cent polarization for an incident flux of π units per unit normal area. Results are presented for the reflected and transmitted intensity and per cent polarization for optical depths 2.0 and 4.0, for a particular problem of conservative Rayleigh scattering.

Save