Characteristics of the Large-Scale Dispersion of Particles in the Southern Hemisphere

S-K. Kao University of Utah, Salt Lake City

Search for other papers by S-K. Kao in
Current site
Google Scholar
PubMed
Close
and
William R. Hill University of Utah, Salt Lake City

Search for other papers by William R. Hill in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An analysis of the Eulerian and Lagrangian velocities at the 200-mb level in the Southern Hemisphere is made. It is found that: 1) the zonal component of the eddy diffusivity in the mid-atmosphere in the Southern Hemisphere is about 50% greater than that in the Northern, whereas the meridional component of the eddy diffusivity in the Southern Hemisphere is about 50% smaller than that in the Northern; 2) the coefficient for the Eulerian-Lagrangian time-scale transformation in the Southern Hemisphere is about 0.6 which is of the same order of magnitude as that in the Northern; 3) the autocorrelation functions and energy spectra of the Eulerian and Lagrangian velocities in the Southern Hemisphere are similar to those in the Northern; and 4) the peak of the energy spectrum of the meridional component of the Lagrangian velocity in the Southern Hemisphere occurs near the frequency 1.8 × 10−2 cycle hr−1, about the same as that in the Northern.

Abstract

An analysis of the Eulerian and Lagrangian velocities at the 200-mb level in the Southern Hemisphere is made. It is found that: 1) the zonal component of the eddy diffusivity in the mid-atmosphere in the Southern Hemisphere is about 50% greater than that in the Northern, whereas the meridional component of the eddy diffusivity in the Southern Hemisphere is about 50% smaller than that in the Northern; 2) the coefficient for the Eulerian-Lagrangian time-scale transformation in the Southern Hemisphere is about 0.6 which is of the same order of magnitude as that in the Northern; 3) the autocorrelation functions and energy spectra of the Eulerian and Lagrangian velocities in the Southern Hemisphere are similar to those in the Northern; and 4) the peak of the energy spectrum of the meridional component of the Lagrangian velocity in the Southern Hemisphere occurs near the frequency 1.8 × 10−2 cycle hr−1, about the same as that in the Northern.

Save