Flux-Profile Relationships in the Atmospheric Surface Layer

View More View Less
  • 1 Air Force Cambridge Research Laboratories, University of Washington, Seattle
  • | 2 Air Force Cambridge Research Laboratories, Bedford, Mass
  • | 3 Commonwealth Scientific and Industrial Research Organization, Canberra, Australia
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Wind and temperature profiles for a wide range of stability conditions have been analyzed in the context of Monin-Obukhov similarity theory. Direct measurements of heat and momentum fluxes enabled determination of the Obukhov length L, a key independent variable in the steady-state, horizontally homogeneous, atmospheric surface layer. The free constants in several interpolation formulas can be adjusted to give excellent fits to the wind and temperature gradient data. The behavior of the gradients under neutral conditions is unusual, however, and indicates that von Kármán's constant is ∼0.35, rather than 0.40 as usually assumed, and that the ratio of eddy diffusivities for heat and momentum at neutrality is ∼1.35, compared to the often-suggested value of 1.0. The gradient Richardson number, computed from the profiles, and the Obukhov stability parameter z/L, computed from the measured fluxes, are found to be related approximately linearly under unstable conditions. For stable conditions the Richard on number approaches a limit of ∼0.21 as stability increases. A comparison between profile-derived and measured fluxes shows good agreement over the entire stability range of the observations.

Abstract

Wind and temperature profiles for a wide range of stability conditions have been analyzed in the context of Monin-Obukhov similarity theory. Direct measurements of heat and momentum fluxes enabled determination of the Obukhov length L, a key independent variable in the steady-state, horizontally homogeneous, atmospheric surface layer. The free constants in several interpolation formulas can be adjusted to give excellent fits to the wind and temperature gradient data. The behavior of the gradients under neutral conditions is unusual, however, and indicates that von Kármán's constant is ∼0.35, rather than 0.40 as usually assumed, and that the ratio of eddy diffusivities for heat and momentum at neutrality is ∼1.35, compared to the often-suggested value of 1.0. The gradient Richardson number, computed from the profiles, and the Obukhov stability parameter z/L, computed from the measured fluxes, are found to be related approximately linearly under unstable conditions. For stable conditions the Richard on number approaches a limit of ∼0.21 as stability increases. A comparison between profile-derived and measured fluxes shows good agreement over the entire stability range of the observations.

Save