Heat Transfer by Symmetrical Rotating Annulus Convection

Jack A. C. Kaiser Dept. of the Geophysical Sciences, The University of Chicago

Search for other papers by Jack A. C. Kaiser in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Results of heat transfer measurements in a differentially heated annulus of fluid for both the non-rotating and rotating cases are given. (In the latter case the flow is in the upper symmetric regime.) In all cases the upper surface of the fluid is free. The non-rotating heat transfer is essentially the same as that of vertical slot convection, whereas rotation modifies the heat transfer; the resulting main effects appear to be exerted through a decrease in the Ekman layer thickness.

Abstract

Results of heat transfer measurements in a differentially heated annulus of fluid for both the non-rotating and rotating cases are given. (In the latter case the flow is in the upper symmetric regime.) In all cases the upper surface of the fluid is free. The non-rotating heat transfer is essentially the same as that of vertical slot convection, whereas rotation modifies the heat transfer; the resulting main effects appear to be exerted through a decrease in the Ekman layer thickness.

Save