Atmospheric Frontogenesis Models: Mathematical Formulation and Solution

B. J. Hoskins National Center for Atmospheric Research, Boulder, Cole. 80302

Search for other papers by B. J. Hoskins in
Current site
Google Scholar
PubMed
Close
and
F. P. Bretherton Dept. of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Md. 21218

Search for other papers by F. P. Bretherton in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The approximation of geostrophic balance across a front is studied. Making this approximation, an analytic approach is made to a frontogenesis model based on the classic horizontal deformation field. Kelvin's circulation theorem suggests the introduction of a new independent variable in the cross-front direction. The problem is solved exactly for a Boussinesq, uniform potential vorticity fluid. Non-Boussinesq, non-uniform potential vorticity, latent heat, and surface friction effects are all studied. Using a two-region fluid we model the effects of confluence near the tropopause. A similar approach is made to the appearance of fronts in the finite-amplitude development of the simplest Eady wave; this is also solved analytically. Based on the surface fronts produced by these models, we give a general model of a strong surface front. There is a tendency to form discontinuities in a finite time.

Abstract

The approximation of geostrophic balance across a front is studied. Making this approximation, an analytic approach is made to a frontogenesis model based on the classic horizontal deformation field. Kelvin's circulation theorem suggests the introduction of a new independent variable in the cross-front direction. The problem is solved exactly for a Boussinesq, uniform potential vorticity fluid. Non-Boussinesq, non-uniform potential vorticity, latent heat, and surface friction effects are all studied. Using a two-region fluid we model the effects of confluence near the tropopause. A similar approach is made to the appearance of fronts in the finite-amplitude development of the simplest Eady wave; this is also solved analytically. Based on the surface fronts produced by these models, we give a general model of a strong surface front. There is a tendency to form discontinuities in a finite time.

Save