Abstract
By considering the complex of one-point, turbulent moment equations for velocity, pressure and temperature, it appears possible to predict some properties of diabatic, density-stratified planetary layers using empirical information obtained from laboratory turbulence data in the absence of density stratification. In this paper attention is focused on the near-surface, constant-flux layer. The results, like the empirical input, are simple and, hopefully, will be instructive and useful in the formulation of improved and possibly more complicated models in the future.